β-淀粉样蛋白对大鼠海马星形胶质细胞N-甲基-D-天冬氨酸受体亚单位表达的影响
高香红 宋一志 常丽荣 张亚丽 武艳*
解剖学报 ›› 2013, Vol. 44 ›› Issue (2) : 146-151.
β-淀粉样蛋白对大鼠海马星形胶质细胞N-甲基-D-天冬氨酸受体亚单位表达的影响
β-amyloid protein induces the changes of astrocytic N-methyl-D-aspartate receptor subunits expression in rat hippocampus
目的 探讨Wistar大鼠海马星形胶质细胞N-甲基-D-天冬氨酸受体(NMDAR)亚单位在β-淀粉样蛋白(Aβ)25~35毒性作用下的表达变化特点。方法 大鼠海马原代培养细胞,加Aβ 25~35(10μmol/L)分别作用1h、24h后,应用免疫荧光方法检测对照组和加药组中NR1、NR2A和NR2B的表达情况(n =10)。 结果 对照组海马星形胶质细胞表达NR1、NR2A和NR2B,阳性点状颗粒主要分布在细胞胞体和突起上,在胞体部位分布密集,在细胞突起则散在分布。经Aβ 25~35作用后,三者表达均显著增强( P <0.05)。Aβ1h组和24h组相比,NR1无显著变化,NR2A、NR2B的表达随作用时间增加显著增强( P <0.05)。结论 正常状态下海马星形胶质细胞可表达NMDAR亚单位(NR1、NR2A和NR2B);Aβ 25~35作用会引起NMDAR各亚单位表达显著增强,NR1的表达变化与NR2A和NR2B的变化表现出不一致性。
Objective To investigate the effects of β-amyloid protein (Aβ25-35) on astrocytic N-methyl-D-aspartate receptor (NMDAR) subunits in the rat hippocampus. Methods Aβ25-35 (10μmol/L) was added into the primary cultured hippocampal cells for 1 hour and 24 hours. Immunofluorescence technique was applied to investigate the changes of the expression of NR1, NR2A and NR2B between the control group and Aβ groups ( n =10). Results NR1, NR2A and NR2B were expressed in the hippocampal astrocytes.The positive puncta were mainly distributed in the soma and process. The expression was intensive in the soma and scattered in the process. Their expression was increased following Aβ25-35treatment ( P <0.05 vs control group). The expression of NR2A and NR2B were significantly increased ( P <0.05) between Aβ 1hour group and Aβ 24hours group, while there was no significant changes in NR1 group. Conclusion The rat hippocampal astrocytes express NMDAR subunits (NR1, NR2A and NR2B), and their expressions are significantly increased after Aβ25-35treatment, while the variation tendency of NR1 is different from the changes of NR2A and NR2B.
N-甲基-D-天冬氨酸受体;星形胶质细胞 / β-淀粉样蛋白 / 海马 / 免疫荧光 / 大鼠
N-methyl-D-aspartate receptor / Astrocyte / β-Amyloid protein / Hippocampus / Immunofluorescence / Rat
[1] Roselli F, Tirard M, Lu J, et al. Soluble β-amylaid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses[J]. J Neurosci, 2005, 25(48):11061-11070.
[2] Lee MC, Ting KK, Adams S, et al. Characterisation of the expression of NMDA receptors in human astrocytes[J]. PLoS One, 2010, 5(11):e14123.
[3] Zhou Y, Li HL, Zhao R, et al. Astrocytes express N-methyl-D-aspartate receptor subunits in development,ischemia and post-ischemia[J]. Neurochem Res, 2010, 35(12):2124-2134.
[4] Verkhratsky A, Kirchhoff F. NMDA receptors in glia[J]. Neuroscientist, 2007, 13(1):28-37.
[5] Luque JM, Richards JG. Expression of NMDA 2B receptor subunit mRNA in Bergmann glia[J]. Glia, 1995, 13(3):228-232.
[6] Karadottir R, Cavelier P, Bergersen LH, et al. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia[J]. Nature, 2005, 438(7071):1162-1166.
[7] Salter MG, Fern R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury[J]. Nature, 2005, 438(7071):1167-1171.
[8] Seifert G, Steinhauser C. Glial cells in the mouse hippocampus express AMPA receptors with an intermediateCa2 + permeability[J]. Eur J Neurosci,1995, 7(9):1872-1881.
[9] Krebs C, Fernandes HB, Sheldon C, et al. Functional NMDA receptor subtype 2B is expressed in astrocytes after ischemia in vivo and anoxia in vitro[J]. J Neurosci, 2003, 23(8):3364-3372.
[10] Zhang X, Zhang J, Chen C. Long-term potentiation at hippocampal perforant path-dentate astrocyte synapses[J]. Biochem Biophys Res Commun, 2009, 383(3):326-330.
[11] Shirotain K, Tsubuki S, Iwata N, et al. Neprilysin degrades both amyloid beta peptides 1-40 and 1-42 most rapide and efficiently among thiorphan and phosphoramidon sensitive endopeptidases[J]. J Biol Chem, 2001, 276(24):21895-21901.
[12] De Felice FG, Velasco PT, Lambert MP, et al. Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine[J].J Biol Chem, 2007, 282(15):11590-11601
[13] Kiedrowski L. Critical role of sodium in cytosolic[Ca 2+]elevations in cultured hippocampal CA1 neurons during anoxic depolarization[J]J Neurochem, 2007,100(4):915-923
[14] Liu JP, Gao XL, Wu Y. N-methyl-D-aspartate receptors mediate excitotoxicity in amyloid beta-induced synaptic pathology of Alzheimer’s disease[J]. Neuroembryol Aging, 2008, 5(4):134-143.
[15] Perea G, Araque A. GLIA modulates synaptic transmission[J]. Brain Res Rev, 2010, 63(12): 93-102.
[16] Allen NG, Barres BA. Signaling between glia and neurons: focus on synaptic plasticity[J]. Curr Opin Neurobiol, 2005, 15(5):542-548.
[17] Domenici MR, Paradisi S, Sacchetti B, et al. The presence of astrocytes enhances beta amyloid-induced neurotoxicity in hippocampal cell cultures[J]. J Physiol Paris, 2002, 96(3-4):313-316.
[18] Thal DR. The role of astrocytes in amyloid β-protein toxicity and clearance[J]. Exp Neurol, 2012, 236(1):1-5.
[19] Nagele RG, D′Andrea MR, Lee H, et al. Astrocytes accumulate a beta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains[J]. Brain Res, 2003, 971(2):197-209.
[20] Texido L, Martin-Satue M, Alberdi E, et al. Amyloid-peptide oligomers directly activate NMDA receptors[J]. Cell Calcium, 2011, 49(3):184-190.
[21] Low CM, Wee KS. New insights into the not-so-new NR3 subunits of N-methyl-D-aspartate receptor: localization, structure, and function[J]. Mol Pharmacol, 2010, 78(1):1-11.
[22] Nakanishi N, Tu S, Shin Y, et al. Neuroprotection by the NR3A subunit of the NMDA receptor[J].J Neurosci, 2009, 29(16):5260-5265.
“新世纪优秀人才支持计划资助”项目(NCET-10-0015);北京市教委科技发展计划面上项目(SQKM201210025003);国家自然科学基金资助项目;省自然科学基金资助项目;自然科学基金资助项目
/
〈 |
|
〉 |