[1] Huang A, Yang Y, Shi JY, et al. Mucinous adenocarcinoma: a unique clinicopathological subtype in colorectal cancer[J]. World J Gastro Surg, 2021, 13(12): 1567-1583.
[2] Zhang J, Ge Y, Zhang H, et al. Quantitative T2 mapping to discriminate mucinous from nonmucinous adenocarcinoma in rectal cancer: comparison with diffusion-weighted imaging[J]. Magn Reson Med Sci, 2022, 21(4): 593-598.
[3] Berar M, Ciocan A, Moi E, et al. Comprehensive overview of molecular, imaging, and therapeutic challenges in rectal mucinous adenocarcinoma[J]. Int J Mol Sci, 2025, 26(2): 432.
[4] Pilleron S, Withrow DR, Nicholson BD, et al. Age-related differences in colon and rectal cancer survival by stage, histology, and tumour site: an analysis of United States SEER-18 data[J]. Cancer Epidemiol, 2023, 84: 102363.
[5] Lee DW, Han SW, Lee HJ, et al. Prognostic implication of mucinous histology in colorectal cancer patients treated with adjuvant folfox chemotherapy[J]. Br J Cancer, 2013, 108(10): 1978-1984.
[6] Shin US, Yu CS, Kim JH, et al. Mucinous rectal cancer: effectiveness of preoperative chemoradiotherapy and prognosis[J]. Ann Surg Oncol, 2011, 18(8): 2232-2239.
[7] Kim DD, Litow KJ, Lumbra TJ, et al. Failure of 3 different methods and biopsy sites to diagnose a patient with invasive colorectal cancer[J]. Medicine (Baltimore), 2019, 98(19): e15656.
[8] Alshehri KA, Alsulaimani N, Alghamdi WA, et al. Mucinous differentiation in colorectal cancer: a 10-year experience audit at King Faisal specialist hospital and research centre, Jeddah[J]. Cureus, 2024, 16(3): e56722.
[9] Almeida RR, Souza D, Matalon SA, et al. Rectal MRI after neoadjuvant chemoradiation therapy: a pictorial guide to interpretation[J]. Abdom Radiol (NY), 2021, 46(7): 3044-3057.
[10] Stanietzky N, Morani A, Surabhi V, et al. Mucinous rectal adenocarcinoma|challenges in magnetic resonance imaging interpretation[J]. J Comput Assist Tomo, 2024, 48(5): 683-692.
[11] Horvat N, Hope TA, Pickhardt PJ, et al. Mucinous rectal cancer: concepts and imaging challenges[J]. Abdom Radiol (NY), 2029, 44(11): 3569-3580.
[12] Liu J, Miao G, Deng L, et al. Should the baseline MRI staging criteria differentiate between mucinous and classical rectal adenocarcinoma [J]? Acad Radiol, 2024, 31(4): 1378-1387.
[13] Amankulov J, Akhmetova G, Toleshbaev D, et al. Single-centre evaluation and staging of rectal carcinoma on a 3-Tesla magnetic resonance imaging and correlation with histological profile[J]. Pol J Radiol, 2021, 86: e217-e224.
[14] Curcean S, Curcean A, Martin D, et al. The role of predictive and prognostic MRI-based biomarkers in the era of total neoadjuvant treatment in rectal cancer[J]. Cancers (Basel), 2024, 16(17): 3111.
[15] Colakoglu Er H, Erden A. Mean ADC values discriminate rectal mucinous carcinomafrom rectal nonmucinous adenocarcinoma[J]. Turk J Med Sci, 2017, 47(5): 1520-1525.
[16] Nasu K, Kuroki Y, Minami M. Diffusion-weighted imaging findings of mucinous carcinoma arising in the ano-rectal region: comparison of apparent diffusion coefficient with that of tubular adenocarcinoma[J]. Jpn J Radiol, 2012, 30(2): 120-127.
[17] Zhou M, Chen M, Luo M, et al. Pathological prognostic factors of rectal cancer based on diffusion-weighted imaging, intravoxel incoherent motion, and diffusion kurtosis imaging[J]. Eur Radiol, 2024, 35(2): 979-988.
[18] Song M, Wang Q, Feng H, et al. Preoperative grading of rectal cancer with multiple DWI models, DWI-derived biological markers, and machine learning classifiers[J]. Bioengineering, 2023, 10(11): 1298.
[19] Yin H, Liu W, Xue Q, et al. The value of restriction spectrum imaging in predicting lymph node metastases in rectal cancer: a comparative study with diffusion-weighted imaging and diffusion kurtosis imaging[J]. Insights Imaging, 2024, 15(1): 302.
[20] Ma Q, Liu Z, Zhang J, et al. Multi-task reconstruction network for synthetic diffusion kurtosis imaging: predicting neoadjuvant chemoradiotherapy response in locally advanced rectal cancer[J]. Eur J Radiol, 2024, 174: 111402.
[21] Chen H, Jin Z, Dai X, et al. The diagnostic value of histogram analysis of DWI and DKI for the mismatch repair status of rectal adenocarcinoma[J]. Heliyon, 2024, 10(18): e37526.
[22] El Homsi M, Yildirim O, Gangai N, et al. Contrast-enhanced pelvic magnetic resonance imaging (MRI) for the prediction of treatment response in mucinous rectal cancer[J]. Quant Imaging Med Surg, 2024, 14(6): 4110-4122.
[23] Oberholzer K, Menig M, Pohlmann A, et al. Rectal cancer: assessment of response to neoadjuvant chemoradiation by dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2013, 38(1): 119-126.
[24] Sheng L, Yuan E, Yuan F, et al. Amide proton transfer-weighted imaging of the abdomen: current progress and future directions[J]. Magn Reson Imaging, 2024, 107: 88-99.
[25] Li L, Chen W, Yan Z, et al. Comparative analysis of amide proton transfer MRI and diffusion-weighted imaging in assessing p53 and ki-67 expression of rectal adenocarcinoma[J]. J Magn Reson Imaging, 2020, 52(5): 1487-1496.
[26] Chen WC, Li L, Yan ZX, et al. Three-dimension amide proton transfer MRI of rectal adenocarcinoma: correlation with pathologic prognostic factors and comparison with diffusion kurtosis imaging[J]. Eur Radiol, 2021, 31(5): 3286-3296.
[27] Li J, Lin L, Gao X, et al. Amide proton transfer weighted and intravoxel incoherent motion imaging in evaluation of prognostic factors for rectal adenocarcinoma[J]. Front Oncol, 2022, 11: 783544.
[28] Martens MH, Lambregts DM, Papanikolaou N, et al. Magnetization transfer imaging to assess tumour response after chemoradiotherapy in rectal cancer[J]. Eur Radiol, 2016, 26(2): 390-397.
[29] Minicozzi A, Mosconi E, Cordiano C, et al. Proton magnetic resonance spectroscopy: ex vivo study to investigate its prognostic role in colorectal cancer[J]. Biomed Pharmacother, 2013, 67(7): 593-597.
[30] Nguyen ML, Willows B, Khan R, et al. The potential role of magnetic resonance spectroscopy in image-guided radiotherapy[J]. Front Oncol, 2014, 4: 91.
[31] Lv J, Roy S, Xie M, et al. Contrast agents of magnetic resonance imaging and future perspective[J]. Nanomaterials (Basel), 2023, 13(13): 2003.
[32] Cao WT, Li B, Gong JY, et al. Diffusion-weighted magnetic resonance imaging of mucin pools in locally advanced rectal mucinous adenocarcinoma predicts tumor response to neoadjuvant therapy[J]. Eur J Radiol, 2020, 125: 108890.
[33] Barbaro B, Leccisotti L, Vecchio FM, et al. The potential predictive value of MRI and PET-CT in mucinous and nonmucinous rectal cancer to identify patients at high risk of metastatic disease[J]. Br J Radiol, 2017, 90(1069): 20150836.
[34] Liu M, Zheng W, Liu Y, et al. Value of three-dimensional transrectal ultrasound in diagnosis of rectal mucinous adenocarcinoma and non-mucinous adenocarcinoma: a matched case-control study[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2021, 18(4): 337-343. (in Chinese)
[35] Chan BPH, Patel R, Mbuagbaw L, et al. EUS versus magnetic resonance imaging in staging rectal adenocarcinoma: a diagnostic test accuracy meta-analysis[J]. Gastrointest Endosc, 2019, 90(2): 196-203, e1.
[36] Leufkens AM, Van Den Bosch MA, Van Leeuwen MS, et al. Diagnostic accuracy of computed tomography for colon cancer staging: a systematic review[J]. Scand J Gastroenterol, 2011, 46(7-8): 887-894.
[37] Fitsiori A, Steffen H. Neuroradiology for the ophthalmologist[J]. Klin Monbl Augenheilkd, 2021. doi:10.1055/a-1671-1066.
[38] Li ZH, You DY, Gao DP, et al. Role of CT scan in differentiating the type of colorectal cancer[J]. Onco Targets Ther, 2017, 10: 2297-2303.
[39] National Health Commission of the People’s Republic Of China. Chinese protocol of diagnosis and treatment of colorectal cancer (2020 edition)[J]. Zhonghua Wai Ke Za Zhi, 2020, 58(8): 561-585.
[40] Berger KL, Nicholson SA, Dehdashti F, et al. FDG PET evaluation of mucinous neoplasms: correlation of FDG uptake with histopathologic features[J]. AJR Am J Roentgenol, 2000, 174(4): 1005-1008.
[41] Dos Anjos DA, Habr-Gama A, Vailati BB, et al. (18)F-FDG uptake by rectal cancer is similar in mucinous and nonmucinous histological subtypes[J]. Ann Nucl Med, 2016, 30(8): 513-517.
[42] Shapiro R, Ali UA, Lavery IC, et al. Endorectal ultrasound does not reliably identify patients with uT3 rectal cancer who can avoid neoadjuvant chemoradiotherapy[J]. Int J Colorectal Dis, 2013, 28(7): 993-1000.
[43] Maksim R, Buczyńska A, Sidorkiewicz I, et al. Imaging and metabolic diagnostic methods in the stage assessment of rectal cancer[J]. Cancers (Basel), 2024, 16(14): 2553.
[44] Qin M, Liu M, Huang R, et al. Preoperative T-staging of colorectal cancer by dual-energy computed tomography: a retrospective study[J]. Curr Med Imaging, 2024, 20: e15734056260218.
[45] Ma Y, Ma D, Xu X, et al. Progress of MRI in predicting the circumferential resection margin of rectal cancer: a narrative review[J]. Asian J Surg, 2024, 47(5): 2122-2131.
[46] Kim SJ, Lee YJ, Park MY, et al. Postchemoradiation magnetic resonance imaging circumferential resection margin predicts treatment failure after multidisciplinary directed sphincter preservation in low rectal cancer[J]. J surg oncol, 2023, 128(8): 1365-1371.
[47] Taylor FGM, Quirke P, Heald RJ, et al. Preoperative magnetic resonance imaging assessment of circumferential resection margin predicts disease-free survival and local recurrence: 5-year follow-up results of the mercury study[J]. J Clin Oncol, 2014, 32(1): 34-43.
[48] Engel R, Kudura K, Antwi K, et al. Diagnostic accuracy and treatment benefit of PET/CT in staging of colorectal cancer compared to conventional imaging[J]. Surg Oncol, 2024, 57: 102151.
[49] Hoshino N, Murakami K, Hida K, et al. Diagnostic accuracy of magnetic resonance imaging and computed tomography for lateral lymph node metastasis in rectal cancer: a systematic review and meta-analysis[J]. Int J Clin Oncol, 2019, 24(1): 46-52.
[50] Wang H, Zhang J, Li Y, et al. Deep-learning features based on F18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) to predict preoperative colorectal cancer lymph node metastasis[J]. Clin Radiol, 2024, 79(9): e1152-e1158.
[51] Eglinton T, Luck A, Bartholomeusz D, et al. Positron-emission tomography/computed tomography (PET/CT) in the initial staging of primary rectal cancer[J]. Colorectal Dis, 2010, 12(7): 667-673.
[52] Falconer R, Connor S, Balasingam A, et al. Does positron emission tomography/computed tomography change management in colorectal cancer [J]? Anz J Surg, 2018, 88(4): E248-E251.
[53] Todate Y, Honda M, Takada T, et al. The additional diagnostic impact of positron emission tomography-computed tomography for lymph node metastasis from colorectal cancer: a prospective lymph node level analysis[J]. J surg oncol, 2021, 124(7): 1085-1090.
[54] Lee S, Kassam Z, Baheti AD, et al. Rectal cancer lexicon 2023 revised and updated consensus statement from the society of abdominal radiology colorectal and anal cancer disease-focused panel[J]. Abdom Radiol (NY), 2023, 48(9): 2792-2806.
[55] Cai Z, Xie X, Chen Y, et al. Risk factor analysis for inaccurate pre-operative MRI staging in rectal cancer[J]. BMC Cancer, 2020, 20(1): 253.
[56] Di Costanzo G, Ascione R, Ponsiglione A, et al. Artificial intelligence and radiomics in magnetic resonance imaging of rectal cancer: a review[J]. Explor Target Antitumor Ther, 2023, 4(3): 406-421.
[57] Kagawa Y, Smith JJ, Fokas E, et al. Future direction of total neoadjuvant therapy for locally advanced rectal cancer[J]. Nat Rev Gastroenterol Hepatol, 2024, 21(6): 444-455.
[58] Horvat N, Papanikolaou N, Koh DM. Radiomics beyond the hype: a critical evaluation toward oncologic clinical use[J]. Radiol Artif Intell, 2024, 6(4): e230437.
[59] Catalano V, Loupakis F, Graziano F, et al. Prognosis of mucinous histology for patients with radically resected stage II and III colon cancer[J]. Ann Oncol, 2012, 23(1): 135-141.