要素累加法筛选大鼠肝再生关键mRNA和微RNA及其在肝细胞增殖中的作用

王浚 孔维东 张继红 张春博 王子慧 薛奇杰 徐存拴 郭建林 王改平

解剖学报 ›› 2026, Vol. 57 ›› Issue (1) : 92-99.

PDF(2600 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(2600 KB)
解剖学报 ›› 2026, Vol. 57 ›› Issue (1) : 92-99. DOI: 10.16098/j.issn.0529-1356.2026.01.014
细胞和分子生物学

要素累加法筛选大鼠肝再生关键mRNA和微RNA及其在肝细胞增殖中的作用

  • 王浚1,2孔维东1,2张继红3张春博1,2王子慧1,2薛奇杰1,2徐存拴1,2郭建林1,2*王改平1,2*

作者信息 +

Screening of key mRNAs and microRNAs in rat liver regeneration using the element accumulation method and their roles in hepatocyte proliferation

  • WANG Jun 1, 2, KONG Wei-dong 1, 2, ZHANG Ji-hong 3, ZHANG Chun-bo 1, 2, WANG Zi-hui 1, 2, XUE Qi-jie 1, 2, XU Cun-shuan 1, 2, GUO Jian-lin 1, 2*, WANG Gai-ping1, 2*
Author information +
文章历史 +

摘要

目的探讨大鼠肝再生中肝组织mRNA和微RNA(miRNA)表达变化与肝细胞增殖的关联,及肝再生的分子网络调控规律。方法按Higgins等方法制备大鼠2/3肝切除(PH)模型,于术后0、2、6、12、24、30、36、72、120、168 h等10个时间点取肝右叶,除0点其余9个时间点每个时间点6只大鼠,对照组6只大鼠,用生物芯片定量检测各时间点肝组织的mRNA和miRNA信号值。以PH后0 h的3个信号值为对照,分别除以其他时间点相应mRNA和miRNA的信号值,得到它们的比值。用要素累加法筛选肝再生中肝细胞G0/G1过渡期(PH后2、6 h),肝细胞增殖期(PH后2、6、12、24、30 和36 h),G1/G0过渡期(PH后72、120和168 h)的有意义、有差异、相关、关键mRNA和miRNA。用生物信息学方法分析关键mRNA和miRNA的作用、相互作用和表达相关性。结果用生物芯片检测出大鼠肝再生10个时间点中共13 927种mRNA和1166种miRNA,用要素累加法从这些mRNA和miRNA中筛选出946种关键mRNA和2种关键miRNA novel701_mature与大鼠(rno)-miR-196a-5p。生物信息学分析显示,novel701_mature与肿瘤坏死因子(TNF)受体超家族成员12A(TNFRSF12A)mRNA相互作用,rno-miR-196a-5p与水通道蛋白4(AQP4)、BTB结构域和CNC同源物1(BACH1)、CD244、同源盒B8(HOXB8)、神经接头蛋白1(NRXN1)、表皮桥粒蛋白(PPL)和TSC复合物亚单位1(TSC1)等的mRNA相互作用。其中,上述两种miRNA在肝细胞G0/G1过渡期和增殖期表达上调,G1/G0过渡期下调,它们相互作用的上述8种关键mRNA在上述肝细胞增殖的3个时期均表达上调。结论筛选的2种关键miRNA与8种靶mRNA呈现表达相关性,通过相互作用调节大鼠肝再生中肝细胞增殖和肝再生进程。

Abstract

Objective To elucidate the association between changes in mRNA and microRNA(miRNA) expression and reveal the regulatory patterns in hepatocyte proliferation during rat liver regeneration. MethodsA two-thirds partial hepatectomy (PH) model was established in rats using the Higgins method. Liver right lobe samples were collected at 10 time points (0, 2, 6, 12, 24, 30, 36, 72, 120, and 168 hours) after PH. Except for 0 time point, there were 6 rats in each of the other 9 time points, with 6 rats in the control group. mRNA and miRNA signal values in the liver tissue at each time point were quantitatively detected using microarrays. The signal values of mRNA and miRNA on 0 hour post-PH (three replicates) served as controls. The ratio values of mRNA and miRNA at other time points were calculated by dividing their signal values by the corresponding controls. The element accumulation method was employed to screen biologically significant, differentially expressed, related, and key mRNAs and miRNAs during specific phases of liver regeneration, the hepatocyte G0/G1 transition phase (including 2 and 6 hours post-PH), the proliferation phase (including 2, 6, 12, 24, 30, and 36 hours post-PH), and the G1/G0 transition phase (including 72, 120, and 168 hours post-PH). Bioinformatics method were used to analyze the functions, interactions, and expression correlations of the identified key mRNAs and miRNAs. ResultsA total of 13 927 mRNAs and 1166 miRNAs were detected across 10 time points during rat liver regeneration using biochip technology. By applying the element accumulation method, 946 key mRNAs and two key miRNAs novel701_mature and rattus morvegicus(rno)-miR-196a-5p were identified. Bioinformatics analysis revealed that novel701_mature interacted with TNFRSF12A mRNA, and rno-miR-196a-5p interacted with mRNAs of aquaporin 4(AQP4), BTB damin and CNC domain and CNC homolog 1(BACH1), CD244, homeo box B8(HOXB8), neurexin 1(NRXN1), periplacin(PPL), and TSC complex subunit 1(TSC1). Furthermore, the expression levels of these two miRNAs were up-regulated during the G0/G1 transition and proliferation phases, but down-regulated during the G1/G0 transition in hepatocytes. Conversely, the expression levels of the eight key mRNAs that interacted with these two miRNAs were up-regulated across all three phases (G0/G1 transition, proliferation, and G1/G0 transition) of hepatocyte proliferation. ConclusionThe two key miRNAs show expression correlation with identified eight target mRNAs and regulat hepatocyte proliferation and liver regeneration processes.

关键词

肝再生 / 肝细胞增殖 / 要素累加法 / RNA高通量检测技术 / 大鼠

Key words

/ "> Liver regeneration / Hepatocyte proliferation / Element accumulation method / RNA high-throughput detection technology / Rat

引用本文

导出引用
王浚 孔维东 张继红 张春博 王子慧 薛奇杰 徐存拴 郭建林 王改平. 要素累加法筛选大鼠肝再生关键mRNA和微RNA及其在肝细胞增殖中的作用[J]. 解剖学报. 2026, 57(1): 92-99 https://doi.org/10.16098/j.issn.0529-1356.2026.01.014
WANG Jun , KONG Wei-dong , ZHANG Ji-hong , ZHANG Chun-bo, WANG Zi-hui, XUE Qi-jie , XU Cun-shuan , GUO Jian-lin , WANG Gai-ping.
Screening of key mRNAs and microRNAs in rat liver regeneration using the element accumulation method and their roles in hepatocyte proliferation
[J]. Acta Anatomica Sinica. 2026, 57(1): 92-99 https://doi.org/10.16098/j.issn.0529-1356.2026.01.014
中图分类号: R318    Q257   

参考文献

[1]Wang J, Amin A, Cheung MH, et al. Targeted inhibition of the expression of both MCM5 and MCM7 by miRNA-214 impedes DNA replication and tumorigenesis in hepatocellular carcinoma cells [J]. Cancer Lett, 2022, 539(29): 215677.
[2]Chen X, Song M, Chen W, et al. MicroRNA-21 contributes to liver regeneration by targeting PTEN [J]. Med Sci Monit, 2016, 22(1): 83-91.
[3]Zhang C, Zhao Y, Wang Q, et al. Overexpression of miR-125a-5p inhibits hepatocyte proliferation through the STAT3 Regulation In Vivo and In Vitro [J]. Int J Mol Sci, 2022, 23(15): 8661.
[4]Zang XY, Wang ZH, Li YF, et al. Expression and role of CCAAT enhancer binding protein αmRNA,microRNA-144-3p and three kinds of circular RNAs of hepatocytes during the rat liver regeneration termination [J]. Acta Anatomica Sinica, 2021, 52(6): 904-908. (in Chinese)
臧夏炎,王子慧,李亚霏,等.大鼠肝再生启动阶段肝细胞CCAAT增强子结合蛋白α mRNA、微小RNA-144-3p和3种环状RNA的表达和作用[J].解剖学报, 2021, 52(6): 904-908.
[5]Mohamed WH, Ali MF, Yahia D, et al. Reproductive effects of sulfoxaflor in male Sprague Dawley rats [J]. Environ Sci Pollut R, 2022, 29(30): 45751-45762.
[6]Higgins GM, Anderson RM. Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal [J]. J Arch Pathol, 1931, 12(2): 186-202.
[7]Xu CSh, Zhang JB. Research on the Functional Genomics of the Rat Regenerating Liver [M]. Beijing: Higher Education Press, 2009: 25-32.(in Chinese)
徐存拴, 章静波. 大鼠肝再生的功能基因组学研究 [M]. 北京:高等教育出版社, 2009: 25-32.
[8]Li M, Zhou X, Mei J, et al. Study on the activity of the signaling pathways regulating hepatocytes from G0 phase into G1 phase during rat liver regeneration [J]. Cell Mol Biol Lett, 2014, 19(2): 181-200.
[9]Zhang J, Ma C, Liu Y, et al. Interleukin 18 accelerates the hepatic cell proliferation in rat liver regeneration after partial hepatectomy [J]. Gene, 2014, 537(2): 230-237.
[10]Rizzo F, Hashim A, Marchese G, et al. Timed regulation of P-element-induced wimpy testis-interacting RNA expression during rat liver regeneration [J]. Hepatology (Baltimore, Md), 2014, 60(3): 798-806.
[11]Cox E, Tsuchiya MTN, Ciufo S, et al. NCBI Taxonomy: enhanced access via NCBI Datasets [J]. Nucleic Acids Res, 2025, 53(D1): D1711-D1715.
[12]Kumar P, Laurence E, Crossman DK, et al. Oxalate disrupts monocyte and macrophage cellular function via Interleukin-10 and mitochondrial reactive oxygen species (ROS) signaling [J]. Redox Biol, 2023, 67(11): 102919.
[13]Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets [J]. Nucleic Acids Res, 2020, 48(D1): D127-D131.
[14]Kern F, Krammes L, Danz K, et al. Validation of human microRNA target pathways enables evaluation of target prediction tools [J]. Nucleic Acids Res, 2021, 49(1): 127-144.
[15]Liu H, Li L, Fan Y, et al. Construction of potential gene expression and regulation networks in prostate cancer using bioinformatics tools [J]. Oxid Med Cell Longev, 2021, 2021(1): 8846951.
[16]Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets [J]. Nat Commun, 2019, 10(1): 1523.
[17]Tang D, Chen M, Huang X, et al. SRplot: a free online platform for data visualization and graphing [J]. PLoS One, 2023, 18(11): e0294236.
[18]Shi J, Zhang P, Su H, et al. Bioinformatics analysis of neuroblastoma miRNA based on GEO data [J]. Pharmacogen Pers Med, 2021, 14(1): 849-858.
[19]Wang Z, Xie D, Li J, et al. Molecular force-induced liberation of transforming growth factor-β remodels the spleen for ectopic liver regeneration [J]. J Hepatol, 2024, 80(5): 753-763.
[20]Li J, Zheng Y, Duan Z, et al. PGD2/DP1 axis promotes liver regeneration by secreting Wnt2 in KCs in mice [J]. Hepatology (Baltimore, Md), 2025, 82(1): p77-91.
[21]Zhang S, Yu J, Rao K, et al. Liver-derived extracellular vesicles from patients with hepatitis B virus-related acute-on-chronic liver failure impair hepatic regeneration by inhibiting on FGFR2 signaling via miR-218-5p [J]. Hepatol Int, 2023, 17(4): 833-849.
[22]Liao M, Liao J, Qu J, et al. Hepatic TNFRSF12A promotes bile acid-induced hepatocyte pyroptosis through NFκB/Caspase-1/GSDMD signaling in cholestasis [J]. Cell Death Discov, 2023, 9(1): 26.
[23]Xu RD, Feng F, Yu XS, et al. miR-149-5p inhibits cell growth by regulating TWEAK/Fn14/PI3K/AKT pathway and predicts favorable survival in human osteosarcoma [J]. Int J Immunopath Ph, 2018, 32(1): 2058738418786656.
[24]Chen Y, Gao F, Jiang R, et al. Down-regulation of AQP4 expression via p38 MAPK signaling in temozolomide-induced glioma cells growth inhibition and invasion impairment [J]. J Cell Biochem, 2017, 118(12): 4905-4913.
[25]Cai L, Lei C, Li R, et al. Aquaporin-4 blockage by siRNA protects rat articular chondrocytes from IL-1β-induced apoptosis by inhibiting p38 MAPK signal pathway [J]. Ann Clin Lab Sci, 2017, 47(5): 563-571.
[26]Wang X, Liu J, Jiang L, et al. Bach1 induces endothelial cell apoptosis and cell-cycle arrest through ROS generation [J]. Oxid Med Cell Longev, 2016, 2016(1): 6234043.
[27]Zhang L, Liang J, Qin H, et al. Lnc AC016727-1/BACH1/HIF-1α signal loop promotes the progression of non-small cell lung cancer [J]. J Exp Clin Canc Res, 2023, 42(1): 296.
[28]Jiang P, Li F, Liu Z, et al. BTB and CNC homology 1 (Bach1) induces lung cancer stem cell phenotypes by stimulating CD44 expression [J]. Resp Res, 2021, 22(1): 320.
[29]Zhang F, Liu X, Chen C, et al. CD244 maintains the proliferation ability of leukemia initiating cells through SHP-2/p27(kip1) signaling [J]. Haematologica, 2017, 102(4): 707-718.
[30]Assarsson E, Kambayashi T, Schatzle JD, et al. NK cells stimulate proliferation of T and NK cells through 2B4/CD48 interactions [J]. J Immunol (Baltimore, Md: 1950), 2004, 173(1): 174-180.
[31]Qian Y, Shang Z, Gao Y, et al. Liver regeneration in chronic liver injuries: basic and clinical applications focusing on macrophages and natural killer cells [J]. Cell Mol Gastroenterol Hepatol, 2022, 14(5): 971-981.
[32]Huang YF, Zhu ZJ. The role of innate immune cells in post-hepatectomy liver regeneration [J]. Hepatobiliary Surg Nutr, 2023, 12(2): 267-268.
[33]Guo J, Zhang T, Dou D. Knockdown of HOXB8 inhibits tumor growth and metastasis by the inactivation of Wnt/β-catenin signaling pathway in osteosarcoma [J]. Eur J Pharmacol, 2019, 854(13): 22-27.
[34]Wang T, Lin F, Sun X, et al. HOXB8 enhances the proliferation and metastasis of colorectal cancer cells by promoting EMT via STAT3 activation [J]. Cancer Cell Int, 2019, 19(1): 3.
[35]Zou G, Park JI. Wnt signaling in liver regeneration, disease, and cancer [J]. Clin Mol Hepatol, 2023, 29(1): 33-50.
[36]Moh A, Iwamoto Y, Chai GX, et al. Role of STAT3 in liver regeneration: survival, DNA synthesis, inflammatory reaction and liver mass recovery [J]. Lab Invest, 2007, 87(10): 1018-1028.
[37]Gjørlund MD, Nielsen J, Pankratova S, et al. Neuroligin-1 induces neurite outgrowth through interaction with neurexin-1β and activation of fibroblast growth factor receptor-1 [J]. FASEB J, 2012, 26(10): 4174-4186.
[38]Steiling H, Wüstefeld T, Bugnon P, et al. Fibroblast growth factor receptor signalling is crucial for liver homeostasis and regeneration [J]. Oncogene, 2003, 22(28): 4380-4388.
[39]Li X, Zhang G, Wang Y, et al. Loss of periplakin expression is associated with the tumorigenesis of colorectal carcinoma [J]. Biomed Pharmacother, 2017, 87(3): 366-374.
[40]Sekiya S, Suzuki A. Glycogen synthase kinase 3 β-dependent Snail degradation directs hepatocyte proliferation in normal liver regeneration [J]. PNAS, 2011, 108(27): 11175-11180.
[41]Schwabe RF, Bradham CA, Uehara T, et al. c-Jun-N-terminal kinase drives cyclin D1 expression and proliferation during liver regeneration [J]. Hepatology (Baltimore, Md), 2003, 37(4): 824-832.
[42]Guijarro MV, Danielson LS, Cañamero M, et al. Tsc1 regulates the proliferation capacity of bone-marrow derived mesenchymal stem cells [J]. Cells, 2020, 9(9): 9092072.
[43]Uribe M, Uribe-Echevarría S, Mandiola C, et al. Insight on ALPPS-associating liver partition and portal vein ligation for staged hepatectomy-mechanisms: activation of mTOR pathway [J]. HPB, 2018, 20(8): 729-738.
[44]Huang M, Li S, Zeng H, et al. Exosomal miR-196a-5p contributes to esophageal squamous cell carcinoma malignant progression by inhibiting ITM2B [J]. Pathol Int, 2024, 74(8): 464-474.
[45]Zhang YH, Dai XL, Li CT, et al. MiR-196-5p promotes the proliferation, invasion, and epithelial-mesenchymal transition of cutaneous squamous cell carcinoma by targeting HOXA5 and activating the JAK/STAT pathway [J]. Journal of Diagnosis and Therapy on Dermato-Venereology, 2021, 28(4): 254-260,267. (in Chinese)
张永红, 代雪莲, 李存涛, 等. miR-196-5 p靶向HOXA5激活JAK/STAT通路促进皮肤鳞状细胞癌的增殖,侵袭及EMT [J]. 皮肤性病诊疗学杂志,2021, 28(4): 254-260,267.

PDF(2600 KB)

Accesses

Citation

Detail

段落导航
相关文章

/