人工智能在骨质疏松性椎体骨折影像评估中的应用

黄顺发 苏志虹 林冲 李晓霞 李琪虹 姚伟根

解剖学报 ›› 2026, Vol. 57 ›› Issue (1) : 17-21.

PDF(796 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(796 KB)
解剖学报 ›› 2026, Vol. 57 ›› Issue (1) : 17-21. DOI: 10.16098/j.issn.0529-1356.2026.01.003
机器人与手术导航专栏

人工智能在骨质疏松性椎体骨折影像评估中的应用

  • 黄顺发1苏志虹2*林冲1李晓霞1李琪虹2姚伟根3
作者信息 +

Diagnostic value of artificial intelligence in radiologic assessment of osteoporotic vertebral fractures

  • HUANG Shun-fa1, SU Zhi-hong2*, LIN Chong1, LI Xiao-xia1, LI Qi-hong2, YAO Wei-gen3
Author information +
文章历史 +

摘要

目的  探讨人工智能(AI)技术在骨质疏松性椎体骨折(OVF)影像评估中的准确性、效率及临床应用潜力,为优化骨折早期诊断和分级提供客观依据。方法回顾性分析100例OVF患者和300例正常对照的胸部CT影像数据,采用AI辅助诊断系统与影像医师双盲独立评估模式,分别对病例组和对照组胸部CT片第1胸椎(T1)至第1腰椎(L1)进行评估,以3位资深放射科医师共识为金标准,对两种方法进行一致性分析及效率对比。结果  AI系统与放射医师组在椎体骨折识别上具有高度一致性κ = 0.83(95% CI: 0.76~0.90)。其中,AI对椎体骨折的灵敏度达94.2%,与医师组(86.7%)差异有统计学意义(P<0.05),AI完成单例全胸椎CT分析耗时(16.6±3.2)s,显著短于医师组(89.7±21.4)s(P<0.001)。在AI预筛基础上进行针对性复核,使医师平均阅片时间减少81.5%。结论Genant半定量技术目测法存在重复性差的问题。将人工智能软件(如uAI Spine Analyzer)应用到椎体骨折评估中,可以帮助放射科医生提升读片效率,有效提高椎体骨折的诊断率,尤其在早期轻度骨折识别中表现突出,可作为临床辅助诊断的有效工具,借此密切监测骨健康,对实现“健康老龄化”战略目标具有积极意义。

Abstract

ObjectiveTo evaluate the accuracy, efficiency, and clinical application potential of artificial intelligence (AI) technology in the imaging assessment of osteoporotic vertebral fractures (OVF), providing objective evidence for optimizing early fracture diagnosis and grading. MethodsA retrospective analysis was conducted on chest CT imaging data from 100 OVF patients and 300 normal controls. An AI-assisted diagnostic system and radiologists independently evaluated the thoracic 1(T1) to lumbar 1(L1) vertebrae in a double-blind manner. The consensus of three senior radiologists served as the gold standard. Agreement analysis and efficiency comparison were performed between the two methods. ResultsThe AI system demonstrated high agreement with radiologists in vertebral fracture detection (κ=0.83, 95% CI: 0.76-0.90). The AI system achieved a sensitivity of 94.2%, significantly higher than that of the radiologist group (86.7%, P<0.05). The AI system completed single-case whole-spine CT analysis in (16.6± 3.2) seconds, significantly faster than the radiologist group (89.7±21.4) seconds (P<0.001). When AI pre-screening was combined with targeted radiologist review, the average interpretation time was reduced by 81.5%. ConclusionThe conventional Genant semi-quantitative visual assessment method suffers from poor reproducibility. Integrating AI software (e.g., uAI Spine Analyzer) into vertebral fracture evaluation can enhance radiologists’ efficiency and significantly improve diagnostic accuracy, particularly in detecting early mild fractures. This AI-assisted approach serves as an effective clinical diagnostic tool, facilitating close monitoring of bone health and contributing to the strategic goal of “healthy aging.”

关键词

/ "> 人工智能;骨质疏松性椎体骨折;影像评估;深度学习;回顾性分析;人

Key words

Artificial intelligence
/ Osteoporotic vertebral fracture / Radiologic assessment / Deep learning / Retrospective analysis / Human

引用本文

导出引用
黄顺发 苏志虹 林冲 李晓霞 李琪虹 姚伟根. 人工智能在骨质疏松性椎体骨折影像评估中的应用[J]. 解剖学报. 2026, 57(1): 17-21 https://doi.org/10.16098/j.issn.0529-1356.2026.01.003
HUANG Shun-fa, SU Zhi-hong, LIN Chong, LI Xiao-xia, LI Qi-hong, YAO Wei-gen. Diagnostic value of artificial intelligence in radiologic assessment of osteoporotic vertebral fractures[J]. Acta Anatomica Sinica. 2026, 57(1): 17-21 https://doi.org/10.16098/j.issn.0529-1356.2026.01.003
中图分类号: R322    R445   

参考文献

[1]Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
[2]Biparva AJ, Raoofi S, Rafiei S, et al. Global depression in breast cancer patients: systematic review and meta-analysis[J]. PLoS One, 2023, 18(7):e0287372.
[3]Zheng RS, Sun KX, Zhang SW, et al. Cancer incidence and mortality in China, 2015[J]. Chinese Journal of Oncology, 2019, 41(1): 19-28. (in Chinese)
郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1): 19-28.
[4]Iuliano S, Poon S, Robbins J, et al. Effect of dietary sources of calcium and protein on hip fractures and falls in older adults in residential care: cluster randomised controlled trial[J]. BMJ, 2021,375:n2364.
[5]Li YZ, Yan LS, Cai SQ, et al. The prevalence and under-diagnosis of vertebral fractures on chest radiograph[J]. BMC Musculoskelet Disord, 2018, 19(1):235. (in Chinese)
李毅中,颜丽笙,蔡思清, 等. 胸片上椎体骨折的患病率与漏诊情况分析[J]. 肌肉骨骼疾病, 2018, 19(1): 235.
[6]Liu D, Wang QB. Application of domestic AI model in systematic anatomy teaching design[J]. Chinese Journal of Anatomy, 2025, 48(4): 341-345. (in Chinese)
刘丹, 王岐本. 国产AI大模型在系统解剖学教学设计中的应用[J]. 解剖学杂志, 2025, 48(4): 341-345.
[7]Lee CE, Leslie WD, Czaykowski P, et al. A comprehensive bone-health management approach for men with prostate cancer receiving androgen deprivation therapy[J]. Curr Oncol, 2011, 18(4): e163-172.
[8]Osteoporosis and Bone Mineral Disorders Branch of the Chinese Medical Association. Clinical guideline for diagnosis and management of primary osteoporosis (2017)[J]. Chinese Journal of Osteoporosis and Bone Mineral Research, 2017, 10(5): 413-443. (in Chinese)
中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2017)[J]. 中华骨质疏松和骨矿盐疾病杂志, 2017, 10(5): 413-443.
[9]Cai SQ, Yu HM, Li YZ, et al. Bone mineral density measurement combined with vertebral fracture assessment increases diagnosis of osteoporosis in postmenopausal women[J]. Skeletal Radiology, 2020, 49(2):273-280. (in Chinese)
蔡斯清,俞海明,李毅中, 等. 骨密度测量联合椎体骨折评估提高绝经后妇女骨质疏松症的诊断率[J]. 骨骼放射学杂志, 2020, 49(2): 273-280.
[10]Zeng Q, Li N, Wang QQ, et al. The prevalence of osteoporosis in china, a nationwide, multicenter DXA survey[J]. J Bone Miner Res, 2019, 34(10):1789-1797.
[11]Alibhai SMH, Zukotynski K, Walker-Dilks C, et al. Bone health and bone-targeted therapies for nonmetastatic prostate cancer: a systematic review and meta-analysis[J]. Ann Intern Med, 2017, 167(5): 341-350.
[12]Li S, Cui HX. Exploration and practice of inter-university collaborative human anatomy education for intelligent medical engineering major under the medical-engineering integration paradigm[J]. Chinese Journal of Anatomy, 2025, 48(4): 365-367. (in Chinese)
李莎, 崔慧先. 医工融合背景下智能医学工程专业人体解剖学校际联合的教学探索与实践[J]. 解剖学杂志, 2025, 48(4): 365-367.

基金

厦门市影像医学临床医学研究中心项目(厦科联〔2022〕16号)

PDF(796 KB)

Accesses

Citation

Detail

段落导航
相关文章

/