[1] Dong J, Rees DA. Polycystic ovary syndrome: pathophysiology and therapeutic opportunities [J]. BMJ Med, 2023, 2(1): e000548.
[2] Crespo RP, Bachega T, Mendon?a BB, et al. An update of genetic basis of PCOS pathogenesis [J]. Arch Endocrinol Metab, 2018, 62(3): 352-361.
[3] Chiang C, Lewis LR, Borkowski G, et al. Late-life consequences of short-term exposure to di(2-ethylhexyl) phthalate and diisononyl phthalate during adulthood in female mice [J]. Reprod Toxicol, 2020, 93: 28-42.
[4] Wang S, Xu K, Du W, et al. Exposure to environmental doses of DEHP causes phenotypes of polycystic ovary syndrome [J]. Toxicology, 2024, 509: 153952.
[5] Zhang M, Liu C, Yuan XQ, et al. Individual and joint associations of urinary phthalate metabolites with polycystic ovary and polycystic ovary syndrome: Results from the tree cohort [J]. Environ Toxicol Pharmacol, 2023, 102: 104233.
[6] Guo Q, Deng T, Du Y, et al. Impact of DEHP on mitochondria-associated endoplasmic reticulum membranes and reproductive toxicity in ovary [J]. Ecotoxicol Environ Saf, 2024, 282: 116679.
[7] Ji H, Wu Z, Chen D, et al. Individual and joint effects of phthalates exposure on the risk of early miscarriage [J]. J Expo Sci Environ Epidemiol, 2024, 34(4): 620-628.
[8] Araújo BS, Baracat MCP, Dos Santos Sim?es R, et al. Kisspeptin influence on polycystic ovary syndrome-a mini review [J]. Reprod Sci, 2020, 27(2): 455-460.
[9] Tai Y, Han D, Yang X, et al. Endothelin-3 suppresses luteinizing hormone receptor expression by regulating the cAMP-PKA pathway in hen granulosa cells [J]. Curr Issues Mol Biol, 2024, 46(8): 7832-7845.
[10] Yang M, Lin HW, Zhang HQ, et al. Androgen, androgen receptor and polycystic ovary syndrome [J] Acta Anatomica Sinica, 2018, 49(1): 132-136. (in Chinese)
杨玫, 林海伟, 张宏权, 等. 雄激素及其受体与多囊卵巢综合征 [J]. 解剖学报, 2018, 49(1): 132-136.
[11] Patel J, Chaudhary H, Panchal S, et al. Endocrine-disrupting chemicals and hormonal profiles in pcos women: a comparative study between urban and rural environment [J]. Reprod Toxicol, 2024, 125: 108562.
[12] Yu Z, Wang F, Han J, et al. Opposite effects of high-and low-dose di-(2-ethylhexyl) phthalate (DEHP) exposure on puberty onset, oestrous cycle regularity and hypothalamic kisspeptin expression in female rats [J]. Reprod Fertil Dev, 2020, 32(6): 610-618.
[13] Shao P, Wang Y, Zhang M, et al. The interference of DEHP in precocious puberty of females mediated by the hypothalamic IGF-1/PI3K/Akt/mTOR signaling pathway [J]. Ecotoxicol Environ Saf, 2019, 181: 362-369.
[14] Tesic B, Samardzija Nenadov D, Tomanic T, et al. DEHP decreases steroidogenesis through the cAMP and ERK1/2 signaling pathways in fsh-stimulated human granulosa cells [J]. Cells, 2023, 12(3):398.
[15] Li XN, Li HX, Yang TN, et al. Di-(2-ethylhexyl) phthalate induced developmental abnormalities of the ovary in quail (Coturnix japonica) via disruption of the hypothalamic-pituitary-ovarian axis [J]. Sci Total Environ, 2020, 741: 140293.
[16] Neff AM, Inman Z, Mourikes VE, et al. The role of the aryl hydrocarbon receptor in mediating the effects of mono(2-ethylhexyl) phthalate in mouse ovarian antral follicles?[J]. Biol Reprod, 2024, 110(3): 632-641.
[17] Zhu JL, Chen Z, Feng WJ, et al. Sex hormone-binding globulin and polycystic ovary syndrome [J]. Clinica Chimica Acta, 2019, 499: 142-148.
[18] Li X, Lin S, Yang X, et al. When IGF-1 meets metabolic inflammation and polycystic ovary syndrome [J]. Int Immunopharmacol, 2024, 138: 112529.
[19] AkIn L, Kendirci M, Narin F, et al. Endocrine disruptors and polycystic ovary syndrome: Phthalates [J]. J Clin Res Pediatr Endocrinol, 2020, 12(4): 393-400.
[20] Viswanathan MP, Mullainadhan V, Karundevi B. DEHP and its metabolite MEHP alter the Insr and Glut4 gene expression by blunting the interaction of transcription factors in L6 myotubes [J]. Int J Toxicol, 2025, 44(2): 170-180.
[21] Ding Y, Liu Y, Fei F, et al. Study on the metabolism toxicity, susceptibility and mechanism of di-(2-ethylhexyl) phthalate on rat liver brl cells with insulin resistance in vitro [J]. Toxicology, 2019, 422: 102-120.
[22] Fauziah F, Ali H, Ilmiawati C, et al. Non-monotonic dose-response of di-(2-ethylhexyl) phthalate isolated from Penicillium citrinum XT6 on adipogenesis and expression of PPARγ and GLUT4 in 3T3-L1 adipocytes [J]. J Complement Integr Med, 2023, 20(4): 804-813.
[23] Dutta C, Maddukuri S. Beyond hormones: a systematic review of the risk of cardiovascular diseases in polycystic ovary syndrome [J]. Cureus, 2024, 16(11): e72987.
[24] Liang X, Liang J, Zhang S, et al. Di-2-ethylhexyl phthalate disrupts hepatic lipid metabolism in obese mice by activating the LXR/SREBP-1c and PPAR-α signaling pathways [J]. Sci Total Environ, 2024, 914: 169919.
[25] Khashchenko E, Uvarova E, Vysokikh M, et al. The relevant hormonal levels and diagnostic features of polycystic ovary syndrome in adolescents [J]. J Clin Med, 2020, 9(6):1831.
[26] Oróstica L, Poblete C, Romero C, et al. Pro-inflammatory markers negatively regulate irs1 in endometrial cells and endometrium from women with obesity and pcos [J]. Reprod Sci, 2020, 27(1): 290-300.
[27] Liu Y, Liu H, Li Z, et al. The release of peripheral immune inflammatory cytokines promote an inflammatory cascade in pcos patients via altering the follicular microenvironment [J]. Front Immunol, 2021, 12: 685724.
[28] Sethi JK, Hotamisligil GS. Metabolic messengers: tumour necrosis factor [J]. Nature metabolism, 2021, 3(10): 1302-1312.
[29] Li X, Zhang D, Vatner DF, et al. Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice [J]. Proc Natl Acad Sci USA, 2020, 117(51): 32584-32593.
[30] Lu Z, Zhang C, Han C, et al. Plasticizer bis(2-ethylhexyl) phthalate causes meiosis defects and decreases fertilization ability of mouse oocytes in vivo [J]. J Agric Food Chem, 2019, 67(12): 3459-3468.
[31] Pandey V, Sharma A, Tiwari S, et al. Shatavarin-IV rescues the Di (2-ethylhexyl) phthalate (DEHP) induced oxidative stress in rat granulosa cells in vitro [J]. Reprod Toxicol, 2024, 130: 108737.
[32] Xu B, Zhang Z, Yang H, et al. A novel perspective on di-hexyl phthalate (2-ethylhexyl)-induced reproductive toxicity in females: Lipopolysaccharide synergizes with mono-2-ethylhexyl ester to cause inflammatory apoptosis rather than autophagy in ovarian granulosa cells [J]. Ecotoxicol Environ Saf, 2024, 276: 116319.
[33] Xu B, He T, Yang H, et al. Activation of the p62-Keap1-Nrf2 pathway protects against oxidative stress and excessive autophagy in ovarian granulosa cells to attenuate DEHP-induced ovarian impairment in mice [J]. Ecotoxicol Environ Saf, 2023, 265: 115534.
[34] Zhang Y, Mu X, Gao R, et al. Foetal-neonatal exposure of Di (2-ethylhexyl) phthalate disrupts ovarian development in mice by inducing autophagy [J]. J Hazard Mater, 2018, 358: 101-112.
[35] Dvorak V, Wiedmer T, Ingles-Prieto A, et al. An overview of cell-based assay platforms for the solute carrier family of transporters [J]. Front Pharmacol, 2021, 12: 722889.
[36] Sun J, Gan L, Lv S, et al. Exposure to di-(2-Ethylhexyl) phthalate drives ovarian dysfunction by inducing granulosa cell pyroptosis via the SLC39A5/NF-κB/NLRP3 axis [J]. Ecotoxicol Environ Saf, 2023, 252: 114625.
[37] Zhen D, Xuan T, Hu B, et al. Pteryxin attenuates LPS-induced inflammatory responses and inhibits NLRP3 inflammasome activation in RAW264. 7 cells [J]. J Ethnopharmacol, 2022, 284: 114753.
[38] Xiao C, Zhao H, Zhu H, et al. Tisp40 induces tubular epithelial cell GSDMD-mediated pyroptosis in renal ischemia-reperfusion injury via NF-κB signaling [J]. Front Physiol, 2020, 11: 906.
[39] Zhang TY, Zhang YF, Ning G, Research progress on the genes related to androgens in polyeystic ovary syndrome [J]. Chinese Journal of Endocrinology and Metabolism, 2018, 34(10): 895-898.(in Chinese)
章添悦, 张翼飞, 宁光. 多囊卵巢综合征与雄激素作用有关易感基因的研究进展 [J]. 中华内分泌代谢杂志, 2018, 34(10): 895-898.
[40] Singh A, Rappolee DA, Ruden DM. Epigenetic reprogramming in mice and humans: From fertilization to primordial germ cell development [J]. Cells, 2023, 12(14): 1874.
[41] Liu J, Wang W, Zhu J, et al. Di(2-ethylhexyl) phthalate (DEHP) influences follicular development in mice between the weaning period and maturity by interfering with ovarian development factors and microRNAs [J]. Environ Toxicol, 2018, 33(5): 535-544.
[42] Wen Y, Rattan S, Flaws JA, et al. Multi and transgenerational epigenetic effects of di-(2-ethylhexyl) phthalate (DEHP) in liver [J]. Toxicol Appl Pharmacol, 2020, 402: 115123.
[43] Liu JC, Lai FN, Li L, et al. Di (2-ethylhexyl) phthalate exposure impairs meiotic progression and DNA damage repair in fetal mouse oocytes in vitro [J]. Cell Death Dis, 2017, 8(8): e2966.
[44] Li MH, Wang JJ, Feng YQ, et al. H3K4me3 as a target of di(2-ethylhexyl) phthalate (DEHP) impairing primordial follicle assembly [J]. Chemosphere, 2023, 310: 136811.
[45] Robles-Matos N, Artis T, Simmons RA, et al. Environmental exposure to endocrine disrupting chemicals influences genomic imprinting, growth, and metabolism [J]. Genes, 2021, 12(8): 1153.
[46] Liu YP, Li L, Liu JC, et al. Di(2-ethylhexyl) phthalate exposure to pregnant mice affect H3K27me3 expression of fetal early oocytes [J]. Journal of Qingdao Agricultural University(Natural Science), 2017, 34(3): 191-195. (in Chinese)
刘玉萍, 李苓, 刘京才, 等. 孕鼠 DEHP 暴露影响胎儿早期卵母细胞 H3K27me3 表达的研究[J]. 青岛农业大学学报(自然科学版), 2017, 34(3): 191-195.
[47] Lakshmanan MD, Shaheer K. Endocrine disrupting chemicals may deregulate DNA repair through estrogen receptor mediated seizing of CBP/p300 acetylase [J]. J Endocrinol Invest, 2020, 43(9): 1189-1196.
[48] Liu JC, Xing CH, Xu Y, et al. DEHP exposure to lactating mice affects ovarian hormone production and antral follicle development of offspring [J]. J Hazard Mater, 2021, 416: 125862.
[49] Wang JJ, Tian Y, Li MH, et al. Single-cell transcriptome dissection of the toxic impact of Di (2-ethylhexyl) phthalate on primordial follicle assembly [J]. Theranostics, 2021, 11(10): 4992-5009.
[50] Wang S, Xu K, Du W, et al. Exposure to environmental doses of dehp causes phenotypes of polycystic ovary syndrome [J]. Toxicology, 2024, 509: 153952.