[1] Kang J, La manna F, Bonollo F, et al. Tumor microenvironment mechanisms and bone metastatic disease progression of prostate cancer [J]. Cancer Lett, 2022, 530: 156-169.
[2] Wang Y, Ye F, Liang Y, et al. Breast cancer brain metastasis: insight into molecular mechanisms and therapeutic strategies [J]. Br J Cancer, 2021, 125(8): 1056-1067.
[3] Clézardin P, Coleman R, Puppo M, et al. Bone metastasis: mechanisms, therapies, and biomarkers [J]. Physiol Rev, 2021, 101(3): 797-855.
[4] Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakening field [J]. Nat Rev Cancer, 2014, 14(9): 611-622.
[5] Clézardin P, Benzad I, Croucher PI. Bisphosphonates in preclinical bone oncology [J]. Bone, 2011, 49(1): 66-70.
[6] Valachis A, Polyzos NP, Coleman RE, et al. Adjuvant therapy with zoledronic acid in patients with breast cancer: a systematic review and meta-analysis [J]. Oncologist, 2013, 18(4): 353-361.
[7] Coleman R, Body JJ, Aapro M, et al. Bone health in cancer patients: ESMO Clinical Practice Guidelines [J]. Ann Oncol, 2014, 25 Suppl 3: iii124-iii137.
[8] Hortobagyi GN, van Poznak C, Harker WG, et al. Continued treatment effect of zoledronic acid dosing every 12 vs 4 weeks in women with breast cancer metastatic to bone: the Optimize-2 randomized clinical trial [J]. JAMA Oncol, 2017, 3(7): 906-912.
[9] Clemons M, Ong M, Stober C, et al. A randomised trial of 4-versus 12-weekly administration of bone-targeted agents in patients with bone metastases from breast or castration-resistant prostate cancer [J]. Eur J Cancer, 2021, 142: 132-140.
[10] Hadji P, Coleman RE, Wilson C, et al. Adjuvant bisphosphonates in early breast cancer: consensus guidance for clinical practice from a European Panel [J]. Ann Oncol, 2016, 27(3): 379-390.
[11] Fernández R, Eppard E, Lehnert W, et al. Evaluation of safety and dosimetry of 177Lu-DOTA-ZOL for therapy of bone metastases [J]. J Nucl Med, 2021, 62(8): 1126-1132.
[12] Kostenuik PJ, Nguyen HQ, Mccabe J, et al. Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL [J]. J Bone Miner Res, 2009, 24(2): 182-195.
[13] Brown JE, Coleman RE. Denosumab in patients with cancer-a surgical strike against the osteoclast [J]. Nat Rev Clin Oncol, 2012, 9(2): 110-118.
[14] Lipton A, Fizazi K, Stopeck AT, et al. Effect of denosumab versus zoledronic acid in preventing skeletal-related events in patients with bone metastases by baseline characteristics [J]. Eur J Cancer, 2016, 53: 75-83.
[15] Fizazi K, Bosserman L, Gao G, et al. Denosumab treatment of prostate cancer with bone metastases and increased urine N-telopeptide levels after therapy with intravenous bisphosphonates: results of a randomized phase II trial [J]. J Urol, 2009, 182(2):509-515.
[16] Zhang S, Yin Y, Xiong H, et al. Efficacy, safety, and population pharmacokinetics of MW032 compared with denosumab for solid tumor-related bone metastases: a randomized, double-blind, phase 3 equivalence trial [J]. JAMA Oncol, 2024, 10(4): 448-455.
[17] Luo J, Yang Z, Ma Y, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption [J]. Nat Med, 2016, 22(5): 539-546.
[18] Yue Z, Niu X, Yuan Z, et al. RSPO2 and RANKL signal through LGR4 to regulate osteoclastic premetastatic niche formation and bone metastasis [J]. J Clin Invest, 2022, 132(2):e144579.
[19] Littlewood-Evans AJ, Bilbe G, Bowler WB, et al. The osteoclast-associated protease cathepsin K is expressed in human breast carcinoma [J]. Cancer Res, 1997, 57(23): 5386-5390.
[20] Le Gall C, Bellahcène A, Bonnelye E, et al. A cathepsin K inhibitor reduces breast cancer induced osteolysis and skeletal tumor burden [J]. Cancer Res, 2007, 67(20): 9894-9902.
[21] Mcclung MR, O’donoghue ML, Papapoulos SE, et al. Odanacatib for the treatment of postmenopausal osteoporosis: results of the LOFT multicentre, randomised, double-blind, placebo-controlled trial and LOFT Extension study [J]. Lancet Diabetes Endocrinol, 2019, 7(12): 899-911.
[22] Papapoulos S, Bone H, Cosman F, et al. Incidence of hip and subtrochanteric/femoral shaft fractures in postmenopausal women with osteoporosis in the phase 3 long-term odanacatib fracture trial [J]. J Bone Miner Res, 2021, 36(7): 1225-1234.
[23] Duong LT, Wesolowski GA, Leung P, et al. Efficacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis [J]. Mol Cancer Ther, 2014, 13(12): 2898-2909.
[24] Bertoldo F, Silvestris F, Ibrahim T, et al. Targeting bone metastatic cancer: role of the mTOR pathway [J]. Biochim Biophys Acta, 2014, 1845(2): 248-254.
[25] Browne AJ, Kubasch ML, G?bel A, et al. Concurrent antitumor and bone-protective effects of everolimus in osteotropic breast cancer [J]. Breast Cancer Res, 2017, 19(1): 92.
[26] Hortobagyi GN. Everolimus plus exemestane for the treatment of advanced breast cancer: a review of subanalyses from BOLERO-2 [J]. Neoplasia, 2015, 17(3): 279-288.
[27] Gnant M, Baselga J, rugo HS, et al. Effect of everolimus on bone marker levels and progressive disease in bone in BOLERO-2 [J]. J Natl Cancer Inst, 2013, 105(9): 654-663.
[28] Jiang P, Gao W, Ma T, et al. CD137 promotes bone metastasis of breast cancer by enhancing the migration and osteoclast differentiation of monocytes/macrophages [J]. Theranostics, 2019, 9(10): 2950-2966.
[29] Wang K, Gu Y, Liao Y, et al. PD-1 blockade inhibits osteoclast formation and murine bone cancer pain [J]. J Clin Invest, 2020, 130(7): 3603-3620.
[30] Baksh D, Tuan RS. Canonical and non-canonical Wnts differentially affect the development potential of primary isolate of human bone marrow mesenchymal stem cells [J]. J Cell Physiol, 2007, 212(3): 817-826.
[31] Kasoha M, Bohle RM, Seibold A, et al. Dickkopf-1 (Dkk1) protein expression in breast cancer with special reference to bone metastases [J]. Clin Exp Metastasis, 2018, 35(8): 763-775.
[32] Fulciniti M, Tassone P, Hideshima T, et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma [J]. Blood, 2009, 114(2): 371-379.
[33] Cosman F, Crittenden DB, Grauer A. Romosozumab treatment in postmenopausal osteoporosis [J]. N Engl J Med, 2017, 376(4): 396-397.
[34] Florio M, Gunasekaran K, Stolina M, et al. A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair [J]. Nat Commun, 2016, 7: 11505.
[35] Sun X, Li K, Hase M, et al. Suppression of breast cancer-associated bone loss with osteoblast proteomes via Hsp90ab1/moesin-mediated inhibition of TGFβ/FN1/CD44 signaling [J]. Theranostics, 2022, 12(2): 929-943.
[36] Shibata H, Yasuda H, Sekine N, et al. Activin A increases intracellular free calcium concentrations in rat pancreatic islets [J]. FEBS Lett, 1993, 329(1-2): 194-198.
[37] Sugii H, Albougha MS, Adachi O, et al. Activin A promotes osteoblastic differentiation of human preosteoblasts through the ALK1-Smad1/5/9 pathway [J]. Int J Mol Sci, 2021, 22(24):13491.
[38] Fuller K, Bayley KE, Chambers TJ. Activin A is an essential cofactor for osteoclast induction [J]. Biochem Biophys Res Commun, 2000, 268(1): 2-7.
[39] Ikenoue T, Jingushi S, Urabe K, et al. Inhibitory effects of activin-A on osteoblast differentiation during cultures of fetal rat calvarial cells [J]. J Cell Biochem, 1999, 75(2): 206-214.
[40] Shimizu K, Kikuta J, Ohta Y, et al. Single-cell transcriptomics of human cholesteatoma identifies an activin A-producing osteoclastogenic fibroblast subset inducing bone destruction [J]. Nat Commun, 2023, 14(1): 4417.
[41] Chantry AD, Heath D, Mulivor AW, et al. Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo [J]. J Bone Miner Res, 2010, 25(12): 2633-2646.
[42] Sugatani T, Agapova OA, Fang Y, et al. Ligand trap of the activin receptor type IIA inhibits osteoclast stimulation of bone remodeling in diabetic mice with chronic kidney disease [J]. Kidney Int, 2017, 91(1): 86-95.
[43] Morse A, Cheng TL, Peacock L, et al. RAP-011 augments callus formation in closed fractures in rats [J]. J Orthop Res, 2016, 34(2): 320-330.
[44] Yin X, Chen Z, Liu Z, et al. Tissue transglutaminase (TG2) activity regulates osteoblast differentiation and mineralization in the SAOS-2 cell line [J]. Braz J Med Biol Res, 2012, 45(8): 693-700.
[45] Kim WS, Kim H, Jeong EM, et al. Transglutaminase 2 regulates osteoclast differentiation via a Blimp1-dependent pathway [J]. Sci Rep, 2017, 7(1): 10626.
[46] Yang Z, Zhang XW, Zhuo FF, et al. Allosteric activation of transglutaminase 2 via inducing an “open” conformation for osteoblast differentiation [J]. Adv Sci (Weinh), 2023, 10(18): e2206533.
[47] Han Y, you X, Xing W, et al. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts [J]. Bone Res, 2018, 6: 16.
[48] Franzolin G, Brundu S, Cojocaru CF, et al. PlexinB1 inactivation reprograms immune cells in the tumor microenvironment, inhibiting breast cancer growth and metastatic dissemination [J]. Cancer Immunol Res, 2024, 12(9): 1286-1301.