基于CT影像组学对早期浸润性肺腺癌高级别病理成分的预测

楼金金 王和平 黄燕燕 李春燕 续力云

解剖学报 ›› 2025, Vol. 56 ›› Issue (5) : 576-584.

PDF(2882 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(2882 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (5) : 576-584. DOI: 10.16098/j.issn.0529-1356.2025.05.009

基于CT影像组学对早期浸润性肺腺癌高级别病理成分的预测

  • 楼金金1 王和平2 黄燕燕1 李春燕1 续力云1* 
作者信息 +

Prediction of high-grade pathological components in early invasive lung adenocarcinoma based on CT radiomics

  • LOU  Jin-jin1  WANG  He-ping2  HUANG  Yan-yan1  LI  Chun-yan1  XU  Li-yun1* 
Author information +
文章历史 +

摘要

目的 构建一种基于CT影像组学的早期浸润性肺腺癌(ILAC)高级别病理成分的预测模型。 方法  收集2015年1月~2019年12月舟山医院胸心外科行肺癌根治术且术后病理诊断为Ⅰ期的共495例患者信息,包括性别、年龄、病理结果、肿瘤标志物和术前胸部CT影像等资料。将术后病理中的微乳头和实性成分定义为“高级别病理成分”,而不含高级别病理成分者归为低级别组,含高级别病理成分者归为高级别组。使用简单随机分组方法将纳入病例按7∶3比例随机分为训练集343例与验证集152例。通过科研平台对CT图像上结节的感兴趣区域进行逐层勾画并提取1950个影像组学特征。经F检验、Pearson相关系数和基于L1的特征选择等方法进行特征筛选,运用逻辑回归机器学习分类器构建模型,命名为模型2(mod 2),并计算获得影像组学评分(Radscore)。将一般信息和CT特征进行差异分析,将具有统计学意义的指标采用二元Logistic回归分析构建模型,命名为模型1(mod 1)。同时加入Radscore构建模型,命名为联合模型(comb mod)。计算三种模型的曲线下面积(AUC)、敏感性和特异性,绘制列线图。结果 共收集495例,其中训练集343例,验证集152例。性别、癌胚抗原、结节性质、病灶最大径等指标参与构建mod 1。影像组学特征中筛选获得12个特征用于建立mod 2。而comb mod表现最佳(训练集AUC:0.887,验证集AUC:0.875),且具有较好的临床实用性。结论 将一般CT特征和影像组学特征相结合所构建的模型,能较准确地预测早期ILAC中的高级别病理成分,为临床医生对患者手术方式的选择提供参考依据。 

Abstract

 Objective To construct a predictive model for high-grade pathological components of early invasive lung adenocarcinoma(ILAC) based on radiomics.    Methods Collecting information on total 495 patients who underwent radical operation and were pathologically diagnosed as stage Ⅰ in the cardiothoracic surgery of Zhoushan Hospital from January 2015 to December 2019, including gender, age, pathological findings, tumor markers and preoperative chest CT images. The micropapillary and solid components in postoperative pathology were defined as “high-grade pathological components”, while those without high-grade pathological components were classified into the low-grade group and those with high-grade pathological components were classified into the high-grade group. And patients were randomly divided into the training set(343 cases) and the validation set(152 cases) with a ratio of 7∶3 using the simple randomization grouping method. The region of interest of nodules on CT images were delineated layer by layer by scientific research platform and 1950 radiomics features were extracted. And then those features were filtrated by Ftest, Pearson correlation coefficient, and L1 based feature selection. A model was built by using Logistic regression machine learning classifier, named mod 2, and radscore was also obtained. Differences between general information and CT features were analyzed. Binary Logistic regression analysis was used to construct a model for statistically significant variables, named mod 1. At the same time, Radscore was added to build the mod and named comb mod. The area under the curve(AUC), sensitivity and specificity of the three models were calculated. A nomogram was also drawn.   Results A total of 495 patients were divided into the training set (n=343) and the validation set (n=152). Gender, carcinoma embryonic antigen(CEA), nodule, and maximum diameter were screened out in clinical features and involved in constructing the mod 1. Twelve features were selected from the radiomics features to build mod 2. Comb mod performed best, training set AUC:0.887, validation set AUC:0.875, and had good clinical practicability.    Conclusion The model composed of general feature, CT feature and radiomics features could accurately predict high-grade pathological components in early ILAC, and provide references for clinicians to choose surgical method  for patients. 

关键词

浸润性肺腺癌 / 影像组学 / 肺结节 / 计算机断层扫描 /

Key words

Invasive lung adenocarcinoma
/ Radiomics / Pulmonary module / Computed tomography / Human

引用本文

导出引用
楼金金 王和平 黄燕燕 李春燕 续力云. 基于CT影像组学对早期浸润性肺腺癌高级别病理成分的预测[J]. 解剖学报. 2025, 56(5): 576-584 https://doi.org/10.16098/j.issn.0529-1356.2025.05.009
LOU Jin-jin WANG He-ping HUANG Yan-yan LI Chun-yan XU Li-yun. Prediction of high-grade pathological components in early invasive lung adenocarcinoma based on CT radiomics[J]. Acta Anatomica Sinica. 2025, 56(5): 576-584 https://doi.org/10.16098/j.issn.0529-1356.2025.05.009
中图分类号: R361    R734.2    

参考文献

 [1] Goldstraw P, Chansky K, Crowley J, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (Eighth) edition of the TNM classification for lung cancer[J]. J Thorac Oncol, 2016, 11(1):39-51.
 [2] Fan X, Liang C, Ma X,et al. Clinical, imaging, and pathological-molecular characteristics associated with stage IA invasive lung Adenocarcinoma rRecurrence after sub-lobar resection[J]. Acad Radiol, 2025,32(1):450-459.
 [3] Nicholson AG, Tsao MS, Beasley MB, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015[J]. J Thorac Oncol, 2022, 17(3):362-387.
 [4] Yotsukura M, Asamura H, Motoi N, et al. Long-term prognosis of patients with resected aAdenocarcinoma in situ and minimally invasive Aadenocarcinoma of the Lung[J]. J Thorac Oncol, 2021, 16(8):1312-1320.
 [5] Wang Z, Zhang N, Liu J, et al. Predicting micropapillary or solid pattern of lung adenocarcinoma with CT-based radiomics, conventional radiographic and clinical features[J]. Respir Res, 2023, 24(1):282.
 [6] Bertoglio P, Aprile V, Ventura L, et al. Impact of high-grade patterns in early-stage lung adenocarcinoma: a multicentric analysis[J]. Lung, 2022, 200(5):649-660.
 [7] Lee G, Lee HY, Jeong JY, et al. Clinical impact of minimal micropapillary pattern in invasive lung adenocarcinoma: prognostic significance and survival outcomes[J]. Am J Surg Pathol, 2015, 39(5):660-666.
 [8] Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges[J]. Magn Reson Imaging, 2012, 30(9):1234-1248.
 [9] Lafata KJ, Wang Y, Konkel B, et al. Radiomics: a primer on hig-throughput image phenotyping[J]. Abdom Radiol (NY), 2022,47(9):2986-3002.
 [10] Lee HJ, Nguyen AT, Song MW, et al. Prediction of residual axillary nodal metastasis following neoadjuvant chemotherapy for breast cancer: radiomics analysis based on chest computed tomography[J]. Korean J Radiol, 2023, 24(6):498-511.
 [11] Liu J, Qi L, Wang Y, et al. Development of a combined radiomics and CT featurebased model for differentiating malignant from benign subcentimeter solid pulmonary nodules[J]. Eur Radiol Exp, 2024, 8(1):8.
 [12] Yang X, Liu M, Ren Y, et al. Using contrast-enhanced CT and non-contrast-enhanced CT to predict EGFR mutation status in NSCLC patients-a radiomics nomogram analysis[J]. Eur Radiol, 2022, 32(4):2693-2703.
 [13] Yang Y, Yang J, Shen L, et al. A multi-omics-based serial deep learning approach to predict clinical outcomes of single-agent anti-PD-1/PD-L1 immunotherapy in advanced stage non-small-cell lung cancer[J]. Am J Transl Res, 2021, 13(2):743-756.
 [14] Xu ZhY, Yang YJ, Duan R, et al. Value of highresolution CT radiomics model in differe-ntiating glandular precursor lesions and minimally invasive adenocarcinoma presenting as subcentimeter pure ground glass nodules[J].Journal of Molecular Imaging, 2024, 47(3):249-255.(in Chinese) 
徐振宇,杨云竣,段锐,等.高分辨CT影像组学模型鉴别亚厘米肺纯磨玻璃结节腺体前驱病变与微浸润腺癌的价值[J].分子影像学杂志,2024,47(3):249-255.
 [15] Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1):47-53.
 [16] Mikubo M, Tamagawa S, Kondo Y, et al. Micropapillary and solid components as high-grade patterns in IASLC grading system of lung adenocarcinoma: Clinical implications and management[J]. Lung Cancer, 2024, 187:107445.
 [17] Sun K, You A, Wang B, et al. Clinical T1aN0M0 lung cancer: differences in clinicopathological patterns and oncological outcomes based on the findings on high-resolution computed tomography[J]. Eur Radiol, 2021, 31(10):7353-7362.
 [18] Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4):441-446.
 [19] Liang W, Zhao YQ, Gui DQ, et al. Prediction of lung cancer typing based on radiomics[J]. Acta Anatomica Sinica, 2019, 50(4):495-500.(in Chinese)
梁伟, 赵艳秋, 桂东奇, 等. 基于影像组学的肺癌分型预测[J].解剖学报, 2019, 50(4): 495-500.
 [20] Wang F, Zhang T, Yuan M, et al. Radiomics model based on CT images for distinguishing invasive lung adenocarcinoma with micropapillary or solid structure[J]. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2024, 31(1):65-70.(in Chinese) 
王芬,张腾,袁梅,等.基于CT影像组学鉴别伴微乳头及实体型结构浸润性肺腺癌[J].中国胸心血管外科临床杂志,2024,31(1):65-70.

PDF(2882 KB)

Accesses

Citation

Detail

段落导航
相关文章

/