[1] Goldstraw P, Chansky K, Crowley J, et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (Eighth) edition of the TNM classification for lung cancer[J]. J Thorac Oncol, 2016, 11(1):39-51.
[2] Fan X, Liang C, Ma X,et al. Clinical, imaging, and pathological-molecular characteristics associated with stage IA invasive lung Adenocarcinoma rRecurrence after sub-lobar resection[J]. Acad Radiol, 2025,32(1):450-459.
[3] Nicholson AG, Tsao MS, Beasley MB, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015[J]. J Thorac Oncol, 2022, 17(3):362-387.
[4] Yotsukura M, Asamura H, Motoi N, et al. Long-term prognosis of patients with resected aAdenocarcinoma in situ and minimally invasive Aadenocarcinoma of the Lung[J]. J Thorac Oncol, 2021, 16(8):1312-1320.
[5] Wang Z, Zhang N, Liu J, et al. Predicting micropapillary or solid pattern of lung adenocarcinoma with CT-based radiomics, conventional radiographic and clinical features[J]. Respir Res, 2023, 24(1):282.
[6] Bertoglio P, Aprile V, Ventura L, et al. Impact of high-grade patterns in early-stage lung adenocarcinoma: a multicentric analysis[J]. Lung, 2022, 200(5):649-660.
[7] Lee G, Lee HY, Jeong JY, et al. Clinical impact of minimal micropapillary pattern in invasive lung adenocarcinoma: prognostic significance and survival outcomes[J]. Am J Surg Pathol, 2015, 39(5):660-666.
[8] Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges[J]. Magn Reson Imaging, 2012, 30(9):1234-1248.
[9] Lafata KJ, Wang Y, Konkel B, et al. Radiomics: a primer on hig-throughput image phenotyping[J]. Abdom Radiol (NY), 2022,47(9):2986-3002.
[10] Lee HJ, Nguyen AT, Song MW, et al. Prediction of residual axillary nodal metastasis following neoadjuvant chemotherapy for breast cancer: radiomics analysis based on chest computed tomography[J]. Korean J Radiol, 2023, 24(6):498-511.
[11] Liu J, Qi L, Wang Y, et al. Development of a combined radiomics and CT featurebased model for differentiating malignant from benign subcentimeter solid pulmonary nodules[J]. Eur Radiol Exp, 2024, 8(1):8.
[12] Yang X, Liu M, Ren Y, et al. Using contrast-enhanced CT and non-contrast-enhanced CT to predict EGFR mutation status in NSCLC patients-a radiomics nomogram analysis[J]. Eur Radiol, 2022, 32(4):2693-2703.
[13] Yang Y, Yang J, Shen L, et al. A multi-omics-based serial deep learning approach to predict clinical outcomes of single-agent anti-PD-1/PD-L1 immunotherapy in advanced stage non-small-cell lung cancer[J]. Am J Transl Res, 2021, 13(2):743-756.
[14] Xu ZhY, Yang YJ, Duan R, et al. Value of highresolution CT radiomics model in differe-ntiating glandular precursor lesions and minimally invasive adenocarcinoma presenting as subcentimeter pure ground glass nodules[J].Journal of Molecular Imaging, 2024, 47(3):249-255.(in Chinese)
徐振宇,杨云竣,段锐,等.高分辨CT影像组学模型鉴别亚厘米肺纯磨玻璃结节腺体前驱病变与微浸润腺癌的价值[J].分子影像学杂志,2024,47(3):249-255.
[15] Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022[J]. J Natl Cancer Cent, 2024, 4(1):47-53.
[16] Mikubo M, Tamagawa S, Kondo Y, et al. Micropapillary and solid components as high-grade patterns in IASLC grading system of lung adenocarcinoma: Clinical implications and management[J]. Lung Cancer, 2024, 187:107445.
[17] Sun K, You A, Wang B, et al. Clinical T1aN0M0 lung cancer: differences in clinicopathological patterns and oncological outcomes based on the findings on high-resolution computed tomography[J]. Eur Radiol, 2021, 31(10):7353-7362.
[18] Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4):441-446.
[19] Liang W, Zhao YQ, Gui DQ, et al. Prediction of lung cancer typing based on radiomics[J]. Acta Anatomica Sinica, 2019, 50(4):495-500.(in Chinese)
梁伟, 赵艳秋, 桂东奇, 等. 基于影像组学的肺癌分型预测[J].解剖学报, 2019, 50(4): 495-500.
[20] Wang F, Zhang T, Yuan M, et al. Radiomics model based on CT images for distinguishing invasive lung adenocarcinoma with micropapillary or solid structure[J]. Chinese Journal of Clinical Thoracic and Cardiovascular Surgery, 2024, 31(1):65-70.(in Chinese)
王芬,张腾,袁梅,等.基于CT影像组学鉴别伴微乳头及实体型结构浸润性肺腺癌[J].中国胸心血管外科临床杂志,2024,31(1):65-70.