玉竹提取物对阿尔茨海默病细胞肿瘤坏死因子α的调节作用

申平 刘航 曾昭明 肖玉波 邓凌艳 李兰玉 莫中成

解剖学报 ›› 2025, Vol. 56 ›› Issue (5) : 548-556.

PDF(5190 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(5190 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (5) : 548-556. DOI: 10.16098/j.issn.0529-1356.2025.05.006
神经生物学

玉竹提取物对阿尔茨海默病细胞肿瘤坏死因子α的调节作用

  • 申平1 刘航1,2 曾昭明1 肖玉波1,3 邓凌艳1 李兰玉2* 莫中成1,2*
作者信息 +

Regulatory effect of polygonatum odoratum extract on inflammatory factor tumor necrosis factor-α in Alzheimer’s disease cells

  • SHEN  Ping1  LIU  Hang1,2 ZENG  Zhao-ming1  XIAO  Yu-bo1,3  DENG  Ling-yan LI  Lan-yu2*  MO Zhong-cheng1,2*#br#
    #br#
Author information +
文章历史 +

摘要

目的 基于网络药理学、分子对接技术及细胞实验探究玉竹(POD)提取物对阿尔茨海默病细胞炎症的调节作用。 方法 筛选玉竹作用于阿尔茨海默病的靶点,进行基因本体论(GO)功能及京都基因和基因组百科全书(KEGG)富集分析;再利用分子对接技术预测玉竹中活性成分与核心靶点蛋白的结合模式;然后利用脂多糖(LPS)诱导神经小胶质细胞BV2炎症细胞模型。玉竹提取物处理细胞模型24 h后收集细胞,通过Real-time PCR检测基因的表达。 结果 筛选得到8种玉竹活性成分,172个作用靶点,GO功能分析得到包括蛋白磷酸化、信号转导等生物过程,蛋白结合、ATP结合等分子功能。KEGG富集得到PI3K/Akt、cAMP等信号通路。分子对接结果显示,玉竹活性成分与表皮生长因子受体(EGFR)、原癌基因酪氨酸蛋白激酶Src(SRC)、肿瘤坏死因子(TNF)、STAT3等靶点具有较好的结合活性。通过Real-time PCR实验,LPS诱导的炎症细胞模型中诱导型一氧化氮合酶(iNOS)、环氧合酶-2(PTGS2)、白细胞介素(IL)-6及IL-1β基因表达显著上调。玉竹提取物处理炎症模型24 h后可以显著下调TNF-α表达,STAT3表达上调,SRC及EGFR表达无显著变化。 结论 网络药理学提示,玉竹可能通过作用 EGFR、SRC、TNF、STAT3等靶点发挥抗阿尔茨海默病的作用。实验结果提示,玉竹提取物通过作用于TNF-α发挥抗炎作用,进而可能发挥缓解阿尔茨海默病的作用。 

Abstract

Objective To investigate the potential mechanism of action of polygonatum odoratum in treating Alzheimer’s disease through the utilization of network pharmacology and molecular docking techniques.    Methods The methods employed include target screening, Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and molecular docking simulations to assess the binding interactions between the active compounds in polygonatum odoratum (POD) and the key target proteins associated with Alzheimer’s disease. Subsequently, lipopolysaccharide(LPS)was used to induce an inflammatory cell model in BV2 microglial cells. After treating the cell model with POD extract for 24 hours, the cells were collected, and the expression of the target genes were detected by Real-time PCR.    Results Eight active ingredients and 172 targets of POD were screened. The biological processes such as protein phosphorylation and signal transduction, protein binding and ATP binding were obtained by GO functional analysis. KEGG enrichment yielded PI3K/Akt, cAMP and other signaling pathways. The molecular docking result  showed that the active ingredient of POD had well binding activity with epidermal growth factor receptor (EGFR), proto-oncogene tyrosine-protein kinase Src (SRC), tumor necrosis factor (TNF), STAT3. Through Real-time PCR experiments, the gene expressions of inducible nitric oxide synthase (iNOS), prostaglandin G/H synthase 2(PTGS2), interleukin (IL) -6, and IL-1β in the LPS-induced inflammatory cell model were significantly upregulated. After treating the inflammatory model with POD extract for 24 hours, the expression of TNF-α was significantly reduced, the expression of STAT3 was upregulated, there were no significant changes in the expressions of SRC and EGFR.    Conclusion Network pharmacology suggests polygonatum odoratum’s potential anti-Alzheimer’s effects may be mediated through its interaction with targets such as EGFR, TNF, SRC, and STAT3. The experimental results  suggest that polygonatum odoratum exerts an anti-inflammatory effect by acting on TNF-α, which may further alleviate the symptoms of Alzheimer’s disease. 

关键词

玉竹 / 阿尔茨海默病 / 网络药理学 / BV2细胞 / 实时定量聚合酶链反应

Key words

Polygonatum odoratum / Alzheimer’s disease / Network Pharmacology / BV2 cell / Real-time PCR

引用本文

导出引用
申平 刘航 曾昭明 肖玉波 邓凌艳 李兰玉 莫中成. 玉竹提取物对阿尔茨海默病细胞肿瘤坏死因子α的调节作用[J]. 解剖学报. 2025, 56(5): 548-556 https://doi.org/10.16098/j.issn.0529-1356.2025.05.006
SHEN Ping LIU Hang ZENG Zhao-ming XIAO Yu-bo DENG Ling-yan LI Lan-yu MO Zhong-cheng. Regulatory effect of polygonatum odoratum extract on inflammatory factor tumor necrosis factor-α in Alzheimer’s disease cells[J]. Acta Anatomica Sinica. 2025, 56(5): 548-556 https://doi.org/10.16098/j.issn.0529-1356.2025.05.006
中图分类号: R322.8    R277.7   

参考文献

 [1] Shi J, Touchon J, Middleton LT, et al. Now and future: strategies for diagnosis, prevention and therapies for Alzheimer’s disease[J]. Sci Bull, 2024, 69(23): 3777-3784.
 [2] Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J]. Lancet Public Health, 2020, 5(12): e661-e671.
 [3] Karran E, De Strooper B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics[J]. Nat Rev Drug Discov, 2022, 21(4): 306-318.
 [4] Wang W, Diwu YCh, Wang DK, et al. Effectiveness and safety of Chinese herbal medicine in the treatment of mild to moderate Alzheimer’s disease patients: a systematic review of high-quality studies[J]. World Chinese Medicine, 2023, 18(1): 93-98,103. (in Chinese) 
王威, 第五永长, 王登坤, 等. 基于高质量研究系统评价中草药治疗轻度中度阿尔茨海默病患者的有效性与安全性[J] 世界中医药, 2023,18(1) 93-98,103.
 [5] Liu XM, Wang SY, Huang JW, et al. Chemical constituents, pharmacological effects, and research progress on the food development of Yuzhu[J]. Food and Drug, 2024, 26(2): 203-212. (in Chinese) 
刘学铭, 王思远, 黄建伟, 等.玉竹的化学成分、药理作用及其食品开发研究进展[J] 食品与药品, 2024, 26(2): 203-212.
 [6] Meng QL, Cui WY, Liu YJ, et al. Chemical constituents and pharmacological effects of Yuzhu: Research progress[J]. Shanghai Shanghai Journal of Traditional Chinese Medicine, 2020, 54(9): 93-98. (in Chinese) 
孟庆龙, 崔文玉, 刘雅婧, 等. 玉竹的化学成分及药理作用研究进展[J] 上海中医药杂志, 2020, 54(9): 93-98.
 [7] Luo C, Liu YJ, Chen ShSh, et al. Process optimization and antioxidant activity of water-soluble polysaccharides produced from Yuzhu by liquid fermentation with Ganoderma lucidum[J]. China Brewing, 2022, 41(11): 180-186. (in Chinese) 
罗灿, 刘玉洁, 陈劭舒, 等. 灵芝菌液体发酵玉竹产水溶性多糖的工艺优化和抗氧化性研究[J] 中国酿造, 2022, 41(11): 180-186.
 [8] Xiong J, Kang SS, Wang Z, et al. FSH blockade improves cognition in mice with Alzheimer’s disease[J]. Nature, 2022, 603(7901): 470-476.
 [9] Che X, Zheng B, Cheng D, et al. Efficacy of Yuzhu extract in rats with polycystic ovary syndrome[J]. Progress in Biochemistry and Biophysics, 2023, 50(7): 1690-1700. (in Chinese) 
车玄, 郑标, 成迪, 等. 玉竹提取物对大鼠多囊卵巢综合症的疗效研究[J] 生物化学与生物物理进展, 2023, 50(7): 1690-1700.
 [10] Huang W, Sherman BT, Lempicki RA, et al. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nature Protoc, 2009, 4(1): 44-57.
 [11] Ogata H, Goto S, Sato K, et al. KEGG: Kyoto Encyclopedia of Genes and Genomes[J]. Nucleic Acids Res, 1999, 27(1): 29-34. 
 [12] Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res, 2019, 47(D1): D607-D613.
 [13] Jiang J, Liu H, Zeng ZhM, et al. Network pharmacology-based investigation of the action targets and mechanisms of Chuanlianzi in the treatment of acute myeloid leukemia[J]. Journal of Xiangnan University (Medical Sciences), 2024, 26(3): 7-12, 20. (in Chinese) 
姜津, 刘航, 曾昭明, 等. 基于网络药理学探讨川楝子治疗急性髓细胞性白血病的作用靶点与机制[J]. 湘南学院学报(医学版), 2024, 26(3): 7-12, 20.
 [14] Zhou M, Xu R, Kaelber DC, et al. Tumor necrosis factor (TNF) blocking agents are associated with lower risk for Alzheimer’s disease in patients with rheumatoid arthritis and psoriasis[J]. PLoS One, 2020, 15(3): e0229819.
 [15] Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation and disease progression in Alzheimer disease[J]. Neurology, 2009, 73(10): 768-774.
 [16] Versele R, Sevin E, Gosselet F, et al. TNF-α and IL-1β modulate blood-brain barrier permeability and decrease amyloid-β peptide efflux in a human blood-brain barrier model[J]. Int J Mol Sci, 2022, 23(18): 10235.
 [17] Chang R, Knox J, Chang J, et al. Blood-brain barrier penetrating biologic TNFα inhibitor for Alzheimer’s disease[J]. Mol Pharm, 2017, 14(7): 2340-2349.
 [18] Zhang B, Wan H, Maierwufu M, et al. STAT3 ameliorates truncated tau-induced cognitive deficits[J]. Neural Regen Res, 2024, 19(4): 915-922.
 [19] Wang L, Chiang HC, Wu W, et al. Epidermal growth factor receptor is a preferred target for treating amyloid-β-induced memory loss[J]. Proc Natl Acad Sci USA, 2012, 109(41): 16743-16748.
 [20] Scanlon DP, Bah A, Krzeminski M, et al. An evolutionary switch in ND2 enables Src kinase regulation of NMDA receptors[J]. Nat Commun, 2017, 8: 15220.
 [21] Vissel B, Krupp JJ, Heinemann SF, et al. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux[J]. Nat Neurosci, 2001, 4(6): 587-596.

PDF(5190 KB)

Accesses

Citation

Detail

段落导航
相关文章

/