[1] Shi J, Touchon J, Middleton LT, et al. Now and future: strategies for diagnosis, prevention and therapies for Alzheimer’s disease[J]. Sci Bull, 2024, 69(23): 3777-3784.
[2] Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J]. Lancet Public Health, 2020, 5(12): e661-e671.
[3] Karran E, De Strooper B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics[J]. Nat Rev Drug Discov, 2022, 21(4): 306-318.
[4] Wang W, Diwu YCh, Wang DK, et al. Effectiveness and safety of Chinese herbal medicine in the treatment of mild to moderate Alzheimer’s disease patients: a systematic review of high-quality studies[J]. World Chinese Medicine, 2023, 18(1): 93-98,103. (in Chinese)
王威, 第五永长, 王登坤, 等. 基于高质量研究系统评价中草药治疗轻度中度阿尔茨海默病患者的有效性与安全性[J] 世界中医药, 2023,18(1) 93-98,103.
[5] Liu XM, Wang SY, Huang JW, et al. Chemical constituents, pharmacological effects, and research progress on the food development of Yuzhu[J]. Food and Drug, 2024, 26(2): 203-212. (in Chinese)
刘学铭, 王思远, 黄建伟, 等.玉竹的化学成分、药理作用及其食品开发研究进展[J] 食品与药品, 2024, 26(2): 203-212.
[6] Meng QL, Cui WY, Liu YJ, et al. Chemical constituents and pharmacological effects of Yuzhu: Research progress[J]. Shanghai Shanghai Journal of Traditional Chinese Medicine, 2020, 54(9): 93-98. (in Chinese)
孟庆龙, 崔文玉, 刘雅婧, 等. 玉竹的化学成分及药理作用研究进展[J] 上海中医药杂志, 2020, 54(9): 93-98.
[7] Luo C, Liu YJ, Chen ShSh, et al. Process optimization and antioxidant activity of water-soluble polysaccharides produced from Yuzhu by liquid fermentation with Ganoderma lucidum[J]. China Brewing, 2022, 41(11): 180-186. (in Chinese)
罗灿, 刘玉洁, 陈劭舒, 等. 灵芝菌液体发酵玉竹产水溶性多糖的工艺优化和抗氧化性研究[J] 中国酿造, 2022, 41(11): 180-186.
[8] Xiong J, Kang SS, Wang Z, et al. FSH blockade improves cognition in mice with Alzheimer’s disease[J]. Nature, 2022, 603(7901): 470-476.
[9] Che X, Zheng B, Cheng D, et al. Efficacy of Yuzhu extract in rats with polycystic ovary syndrome[J]. Progress in Biochemistry and Biophysics, 2023, 50(7): 1690-1700. (in Chinese)
车玄, 郑标, 成迪, 等. 玉竹提取物对大鼠多囊卵巢综合症的疗效研究[J] 生物化学与生物物理进展, 2023, 50(7): 1690-1700.
[10] Huang W, Sherman BT, Lempicki RA, et al. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nature Protoc, 2009, 4(1): 44-57.
[11] Ogata H, Goto S, Sato K, et al. KEGG: Kyoto Encyclopedia of Genes and Genomes[J]. Nucleic Acids Res, 1999, 27(1): 29-34.
[12] Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res, 2019, 47(D1): D607-D613.
[13] Jiang J, Liu H, Zeng ZhM, et al. Network pharmacology-based investigation of the action targets and mechanisms of Chuanlianzi in the treatment of acute myeloid leukemia[J]. Journal of Xiangnan University (Medical Sciences), 2024, 26(3): 7-12, 20. (in Chinese)
姜津, 刘航, 曾昭明, 等. 基于网络药理学探讨川楝子治疗急性髓细胞性白血病的作用靶点与机制[J]. 湘南学院学报(医学版), 2024, 26(3): 7-12, 20.
[14] Zhou M, Xu R, Kaelber DC, et al. Tumor necrosis factor (TNF) blocking agents are associated with lower risk for Alzheimer’s disease in patients with rheumatoid arthritis and psoriasis[J]. PLoS One, 2020, 15(3): e0229819.
[15] Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation and disease progression in Alzheimer disease[J]. Neurology, 2009, 73(10): 768-774.
[16] Versele R, Sevin E, Gosselet F, et al. TNF-α and IL-1β modulate blood-brain barrier permeability and decrease amyloid-β peptide efflux in a human blood-brain barrier model[J]. Int J Mol Sci, 2022, 23(18): 10235.
[17] Chang R, Knox J, Chang J, et al. Blood-brain barrier penetrating biologic TNFα inhibitor for Alzheimer’s disease[J]. Mol Pharm, 2017, 14(7): 2340-2349.
[18] Zhang B, Wan H, Maierwufu M, et al. STAT3 ameliorates truncated tau-induced cognitive deficits[J]. Neural Regen Res, 2024, 19(4): 915-922.
[19] Wang L, Chiang HC, Wu W, et al. Epidermal growth factor receptor is a preferred target for treating amyloid-β-induced memory loss[J]. Proc Natl Acad Sci USA, 2012, 109(41): 16743-16748.
[20] Scanlon DP, Bah A, Krzeminski M, et al. An evolutionary switch in ND2 enables Src kinase regulation of NMDA receptors[J]. Nat Commun, 2017, 8: 15220.
[21] Vissel B, Krupp JJ, Heinemann SF, et al. A use-dependent tyrosine dephosphorylation of NMDA receptors is independent of ion flux[J]. Nat Neurosci, 2001, 4(6): 587-596.