类髓磷脂转录因子1在肌萎缩侧索硬化症中的作用

吕舒畅 管英俊 陈晓素 张皓云 刘金梦 闫秋鹏 陈燕春

解剖学报 ›› 2025, Vol. 56 ›› Issue (5) : 524-532.

PDF(5248 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(5248 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (5) : 524-532. DOI: 10.16098/j.issn.0529-1356.2025.05.003
神经生物学

类髓磷脂转录因子1在肌萎缩侧索硬化症中的作用

  • 吕舒畅1, 2 管英俊1, 2* 陈晓素1, 2 张皓云2 刘金梦1, 2 闫秋鹏2 陈燕春1, 2* 
作者信息 +

Role of myelin transcription factor 1-like in amyotrophic lateral sclerosis#br#

  • LÜ  Shu-chang1,2  GUAN  Ying-jun1,2*  CHEN  Xiao-su1,2  ZHANG  Hao-yun2  LIU  Jin-meng2  YAN  Qiu-peng2  CHEN  Yan-chun1,2* 
Author information +
文章历史 +

摘要

目的 利用生物信息学分析结合体内体外实验,探讨类髓磷脂转录因子1(MYT1L)在肌萎缩侧索硬化症(ALS)进展中表达变化的规律及其与神经元退变的关系。 方法 基于GEO数据库GSE106803数据集,比较携带人源超氧化物歧化酶1突变基因(hSOD1G93A)的ALS转基因小鼠与野生型(WT)小鼠脊髓中MYT1L表达差异。选取hSOD1G93A转基因小鼠及其同窝WT对照小鼠,通过Real-time PCR、Western blotting检测小鼠脊髓不同发病时期MYT1L mRNA及蛋白变化,应用免疫荧光双标染色检测MYT1L在发病中期小鼠脊髓内的分布特点及细胞定位。建立hSOD1G93A突变型NSC34细胞(ALS细胞模型)及hSOD1WT型NSC34细胞(WT对照组),通过Real-time PCR、Western blotting、免疫荧光染色检测MYT1L的表达变化及分布。基于GEO数据库GSE76220数据集,筛选ALS患者腰段脊髓运动神经元中MYT1L高表达组和低表达组的差异表达基因(DEGs),并进行基因本体论(GO)功能富集分析。在ALS细胞模型中过表达MYT1L,检测细胞活力和细胞突起改变。 结果 GSE106803数据集中,MYT1L在ALS小鼠脊髓中表达显著下调,动物实验证实,在发病中期、晚期ALS小鼠脊髓组织中MYT1L mRNA和蛋白水平降低。免疫荧光双标记结果显示,与同窝WT组小鼠相比,ALS小鼠腰段脊髓灰质前角神经元中MYT1L表达量降低,星形胶质细胞中MYT1L表达量增加。细胞实验显示,hSOD1G93A突变型NSC34细胞中MYT1L表达量显著低于对照组,MYT1L在ALS细胞模型中胞质、胞核均表达。ALS患者腰段脊髓运动神经元MYT1L高表达组和低表达组的DEGs富集到突触相关功能。过表达MYT1L可提高hSOD1G93A突变型NSC34细胞活力并促进细胞突起生长。 结论 MYT1L异常低表达与ALS病变密切相关,过表达MYT1L可促进神经突生长,对ALS运动神经元具有保护作用。 

Abstract

Objective To investigate the expression of myelin transcription factor 1-like (MYT1L) during amyotrophic lateral sclerosis (ALS) progression and its association with neuronal degeneration through bioinformatics analysis combined with in vivo and in vitro experiments.   Methods Bioinformatics analysis of the GSE106803 dataset from the Gene Expression Omnibus (GEO) database revealed significant down-regulation of MYT1L in spinal cords of ALS transgenic mice carrying the human superoxide dismutase 1 mutant gene (hSOD1G93A) compared to the wild-type (WT) mice. hSOD1G93A transgenic mice and their WT littermates were selected to analyze MYT1L mRNA and protein changes in spinal cord tissues at different disease stages using Real-time PCR and Western blotting. Double immunofluorescent staining was used to determine the distribution and cellular localization of MYT1L in the spinal cord of mice at the middle stage of the disease. An ALS cellular model was established using hSOD1G93A mutant NSC34 cells, with hSOD1WT NSC34 cells as controls. MYT1L expression and distribution were assessed in these cells via Real-time PCR, Western blotting, and immunofluorescent staining. Based on the GSE76220 dataset from the GEO database, differentially expressed genes (DEGs) between MYT1L high -and low-expression groups in lumbar spinal motor neurons of ALS patients were identified, followed by Gene Ontology (GO) functional enrichment analysis. MYT1L overexpression was induced in the ALS cellular model to evaluate alterations in cell viability and neurite outgrowth.   Results In the GSE106803 dataset, MYT1L expression was significantly down-regulated in the spinal cord of ALS mice. Animal experiments confirmed progressive reductions in MYT1L mRNA and protein levels in spinal cord tissues of ALS mice during mid- and late-disease stages. Compared to the WT group, MYT1L expression decreased in motor neurons of the lumbar spinal cord gray matter anterior horn in ALS mice, while it increased in astrocytes. In vitro, hSOD1G93Amutant NSC34 cells exhibited significantly reduced MYT1L expression than controls, with MYT1L localized to both the cytoplasm and nucleus. DEGs between MYT1L high-and low-expression groups in lumbar spinal cord motor neurons of ALS patients (GSE76220 dataset) were enriched in synaptic-related functions through GO analysis. Overexpression of MYT1L in hSOD1G93A mutant NSC34 cells enhanced cell viability and promoted neurite outgrowth.    Conclusion Aberrantly low expression of MYT1L is closely associated with ALS pathogenesis. Overexpression of MYT1L promotes neurite growth and exerts protective effects on ALS motor neurons, suggesting its therapeutic potential. 

关键词

肌萎缩侧索硬化症 / 类髓磷脂转录因子1 / 神经退变 / NSC34细胞 / 免疫印迹法 / 转基因小鼠

Key words

Amyotrophic lateral sclerosis / Myelin transcription factor 1-like / Neurodegeneration / NSC34 cell / Western blotting / Transgenic mouse

引用本文

导出引用
吕舒畅 管英俊 陈晓素 张皓云 刘金梦 闫秋鹏 陈燕春. 类髓磷脂转录因子1在肌萎缩侧索硬化症中的作用[J]. 解剖学报. 2025, 56(5): 524-532 https://doi.org/10.16098/j.issn.0529-1356.2025.05.003
LÜ Shu-chang GUAN Ying-jun CHEN Xiao-su ZHANG Hao-yun LIU Jin-meng YAN Qiu-peng CHEN Yan-chun. Role of myelin transcription factor 1-like in amyotrophic lateral sclerosis#br#[J]. Acta Anatomica Sinica. 2025, 56(5): 524-532 https://doi.org/10.16098/j.issn.0529-1356.2025.05.003
中图分类号: R322.8    R744.8   

参考文献

 [1] Sun H, Li M, Ji Y, et al. Identification of regulatory factors and prognostic markers in amyotrophic lateral sclerosis[J]. Antioxidants (Basel), 2022, 11(2): 303.
 [2] Chen X, Lv S, Liu J, et al. Exploring the role of axons in ALS from multiple perspectives[J]. Cells, 2024, 13(24): 2076.
 [3] Kao CS, Bruggen R van, Kim JR, et al. Selective neuronal degeneration in MATR3 S85C knock-in mouse model of early-stage ALS[J]. Nat Commun, 2020, 11(1): 5304.
 [4] Saini A, Chawla PA. Breaking barriers with tofersen: enhancing therapeutic opportunities in amyotrophic lateral sclerosis[J]. Eur J Neurol, 2024, 31(2): e16140.
 [5] Coursimault J, Guerrot AM, Morrow MM, et al. MYT1L-associated neurodevelopmental disorder: description of 40 new cases and literature review of clinical and molecular aspects[J]. Hum Genet, 2022, 141(1): 65-80.
 [6] D’Erchia AM, Gallo A, Manzari C, et al. Massive transcriptome sequencing of human spinal cord tissues provides new insights into motor neuron degeneration in ALS[J]. Sci Rep, 2017, 7(1): 10046.
 [7] Benatar M, Robertson J, Andersen PM. Amyotrophic lateral sclerosis caused by SOD1 variants: from genetic discovery to disease prevention[J]. Lancet Neurol, 2025, 24(1): 77-86.
 [8] Meng FD, Guan YJ, Zhao ZhH,et al. Expression of protein tyrosine kinase 7 and receptor tyrosine kinase-like orphan receptor 2 in the brainstem of hSOD1-G93A mutant amyotrophic lateral sclerosis transgenic mice [J]. Acta Anatomica Sinica, 2022,53(6):689-697.(in Chinese) 
孟凡迪,管英俊,赵振涵,等. 蛋白酪氨酸激酶7和受体酪氨酸激酶样孤儿受体2在hSOD1-G93A突变肌萎缩侧索硬化症转基因小鼠脑干中的表达[J].解剖学报, 2022, 53(6): 689-697.
 [9] Liu J, Zhou F, Chen Y, et al. Wnt5a protects motor neurons in amyotrophic lateral sclerosis by regulating the Wnt/Ca2+signaling pathway[J]. Am J Transl Res, 2022, 14(8): 5343-5362.
 [10] Chen YCh, Guan YJ, Liu YX, et al. Protective role of AKT-glycogen synthase kinase-3β signaling pathway in the N2a cell with SOD1G93Amutation [J]. Acta Anatomica Sinica, 2016,47(4):433-441.(in Chinese) 
陈燕春,管英俊,刘永新,等. AKT-糖原合成激酶-3β信号通路对SOD1G93A突变N2a细胞的保护作用[J].解剖学报, 2016, 47(4): 433-441.
 [11] Zhou G, Soufan O, Ewald J, et al. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis[J]. Nucleic Acids Res, 2019, 47(W1): W234-W241.
 [12] Ding K, Zhang FP, Qi GX, et al. Role of zinc finger protein 36, C3H type-like 1 mediating astrocytes activation in motor neuron degeneration in amyotrophic lateral sclerosis [J]. Acta Anatomica Sinica, 2022, 53(3):273-280.(in Chinese) 
丁康,张烽萍,齐高秀,等. C3H1型锌指结合蛋白36介导的星形胶质细胞活化在肌萎缩侧索硬化症运动神经元退变中的作用[J].解剖学报, 2022, 53(3): 273-280.
 [13] Chen J, Yen A, Florian CP, et al. MYT1L in the making: emerging insights on functions of a neurodevelopmental disorder gene[J]. Transl Psychiatry, 2022, 12(1): 292.
 [14] Pineda SS, Lee H, Ulloa-Navas MJ, et al. Singlecell dissection of the human motor and prefrontal cortices in ALS and FTLD[J]. Cell, 2024, 187(8): 1971-1989.e16.
 [15] Kepa A, Martinez Medina L, Erk S, et al. Associations of the intellectual disability gene MYT1L with helix-loop-helix gene expression, hippocampus volume and hippocampus activation during memory retrieval[J]. Neuropsychopharmacology, 2017, 42(13): 2516-2526.
 [16] Geest AT van der, Jakobs CE, Ljubikj T, et al. Molecular pathology, developmental changes and synaptic dysfunction in (pre-) symptomatic human C9ORF72-ALS/FTD cerebral organoids[J]. Acta Neuropathol Commun, 2024, 12(1): 152.
 [17] Nagai M, Re DB, Nagata T, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons[J]. Nat Neurosci, 2007, 10(5): 615-622.
 [18] Torper O, Pfisterer U, Wolf DA, et al. Generation of induced neurons via direct conversion in vivo[J]. Proc Natl Acad Sci USA, 2013, 110(17): 7038-7043.
 [19] Kim S, Oh H, Choi SH, et al. Postnatal age-differential ASD-like transcriptomic, synaptic, and behavioral deficits in Myt1l-mutant mice[J]. Cell Rep, 2022, 40(12): 111398.
 [20] Yen A, Sarafinovska S, Chen X, et al. MYT1L deficiency impairs excitatory neuron trajectory during cortical development[J]. Nat Commun, 2024, 15(1): 10308.
 [21] Winanto, Khong ZJ, Soh BS, et al. Organoid cultures of MELAS neural cells reveal hyperactive Notch signaling that impacts neurodevelopment[J]. Cell Death Dis, 2020, 11(3): 182.
 [22] Mall M, Kareta MS, Chanda S, et al. Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates[J]. Nature, 2017, 544(7649): 245-249.

PDF(5248 KB)

Accesses

Citation

Detail

段落导航
相关文章

/