[1] Deng XF, Guo JY. Roles of impaired parvalbumin positive interneurons in schizzophrenic pathology [J].Advances in Psychological Science, 2018, 26(11): 1992-2002.(in Chinese)
邓潇斐, 郭建友. Parvalbumin阳性中间神经元缺陷在精神分裂症病理机制中的作用 [J].心理科学进展, 2018, 26(11): 1992-2002.
[2] Lagzi F, Fairhall AL. Emergence of co-tuning in inhibitory neurons as a network phenomenon mediated by randomness, correlations, and homeostatic plasticity [J].Sci Adv, 2024, 10(12): eadi4350.
[3] Santos-Silva T, Colodete DAE, Lisboa JRF, et al. Perineuronal nets as regulators of parvalbumin interneuron function: factors implicated in their formation and degradation [J]. Basic Clin Pharmacol Toxicol, 2024, 134(5): 614-628.
[4] Gr?dem S, Thompson HE, R?e BM, et al. Differential impacts of germline and adult aggrecan knockout in PV+ neurons on perineuronal nets and PV+ neuronal function [J]. Mol Psychiatry, 2025, 30(7): 2907-2921.
[5] Navakkode S, Kennedy KB. Neural ageing and synaptic plasticity: prioritizing brain health in healthy longevity [J]. Front Aging Neurosci, 2024, 16:1428244.
[6] Gray DT, Barnes CA. Distinguishing adaptive plasticity from vulnerability in the aging hippocampus [J]. Neuroscience, 2015, 309: 17-28.
[7] Naffaa MM. Significance of the anterior cingulate cortex in neurogenesis plasticity: Connections, functions, and disorders across postnatal and adult stages [J]. Bioessays, 2024, 46(3): e2300160.
[8] Shivakumar AB, Mehak SF, Jijimon F, et al. Extrahippocampal contributions to social memory: the role of septal nuclei [J]. Biol Psychiatry, 2024, 96(11): 835-847.
[9] Song HY, Xu H, Han F. Research progress of dorsal striatum involved in information integration of neural circuits in cognitive function [J].
Acta Universitatis Medicinalis Nanjing(Natural Science), 2022, 42(12): 1759-1766. (in Chinese)
宋恒毅, 胥寒, 韩峰. 背侧纹状体参与认知功能神经环路信息整合研究进展 [J]. 南京医科大学学报(自然科学版), 2022, 42(12): 1759-1766.
[10] Choi EJ, Vandewouw MM, de Villa K, et al. The development of functional connectivity within the dorsal striatum from early childhood to adulthood [J]. Dev Cogn Neurosci, 2023, 61: 101258.
[11] Huang MD, Han Y, Yu YQ. Research progress on barrel cortex and its plasticity [J]. Journal of Zhejiang University (Medical Edition), 2011, 40(3): 332-337. (in Chinese)
黄明德, 韩勇, 虞燕琴. 桶状皮层及其可塑性研究 [J].浙江大学学报(医学版),2011,40(3):332-337.
[12] Ueno H, Takao K, Suemitsu S, et al. Age-dependent and regionspecific alteration of parvalbumin neurons and perineuronal nets in the mouse cerebral cortex [J]. Neurochem Int, 2018, 112: 59-70.
[13] Huang H, Joffrin AM, Zhao Y, et al. Chondroitin 4-O-sulfation regulates hippocampal perineuronal nets and social memory [J]. Proc Natl Acad Sci USA. 2023, 120(24): e2301312120.
[14] Onorato I, Tzanou A, Schneider M, et al. Distinct roles of PV and Sst interneurons in visually induced gamma oscillations [J]. Cell Reports, 2025, 44(3): 115385.
[15] Ichim AM, Barzan H, Moca VV, et al. The gamma rhythm as a guardian of brain health [J]. Elife, 2024, 13: e100238.
[16] Ji KY, Ma WL, Zheng WL. Differentially expressed genes related to age and the Alzheimer’s disease [J]. Acta Anatomica Sinica, 2015, 46(2): 164-169. (in Chinese)
冀开元, 马文丽, 郑文岭. 阿尔茨海默病关于年龄因素的差异基因表达分析 [J]. 解剖学报, 2015, 46(2): 164-169.
[17] Osanai M. Cognitive function and calcium. Cerebral calcium oscillation: functional implication toward cognitive functions [J]. Clin Calcium, 2015, 25(2): 217-225.
[18] Chard PS, Bleakman D, Christakos S, et al. Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones [J]. J Physiol, 1993, 472: 341-357.
[19] Alpár A, G?rtner U, H?rtig W, et al. Distribution of pyramidal cells associated with perineuronal nets in the neocortex of rat [J]. Brain Res, 2006, 1120(1): 13-22.
[20] Yamada J, Jinno S. Spatio-temporal differences in perineuronal net expression in the mouse hippocampus, with reference to parvalbumin [J]. Neuroscience, 2013, 253: 368-379.