光特异性激活少突胶质前体细胞模型小鼠的构建与验证

王舒悦 申杨贝纳 黄南昕 李思维 于彬 王玉鑫 肖岚

解剖学报 ›› 2025, Vol. 56 ›› Issue (5) : 507-514.

PDF(16372 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(16372 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (5) : 507-514. DOI: 10.16098/j.issn.0529-1356.2025.05.001
神经生物学

光特异性激活少突胶质前体细胞模型小鼠的构建与验证

  • 王舒悦1 申杨贝纳2 黄南昕1 李思维1 于彬2 王玉鑫3* 肖岚2* 
作者信息 +

Construction and validation of a mouse model for optically activation of oligodendrocyte precursor cells

  • WANG  Shu-yue1  SHENYANG  Bei-na2  HUANG  Nan-xin1  LI  Si-wei1  YU  Bin2  WANG  Yu-xin3*  XIAO  Lan 2* 
Author information +
文章历史 +

摘要

目的  构建一种可特异性光激活少突胶质前体细胞(OPCs)的转基因小鼠并进行验证。 方法 利用CRISPR/Cas9基因编辑技术构建鸡视蛋白5(cOpn5) Rosa26-LSL-cOpn5品系小鼠,并将其与NG2-CreERT品系小鼠进行交配获得NG2-CreERT;cOpn5转基因小鼠,该模型小鼠经他莫昔芬诱导后可实现光敏蛋白cOpn5在OPCs中的特异性表达。利用免疫荧光染色对该转基因小鼠转入效率和特异性进行验证。进一步利用急性脑片钙成像验证470nm蓝光激活OPCs的功能效应。结果 在NG2-CreERT;cOpn5转基因小鼠中,OPCs可特异性表达光敏蛋白cOpn5。急性脑片钙成像结果显示,蓝光刺激可引起NG2-CreERT;cOpn5光遗传小鼠细胞钙活动增强,表明OPCs可被光激活。 结论 成功构建了一种可特异性光激活OPCs的转基因模型小鼠,为后续在体研究OPCs在中枢神经系统中的功能和调控机制提供了新的工具。 

Abstract

Objective To develop and validate a transgenic mouse model enabling specific and inducible optogenetic activation of oligodendrocyte precursor cells (OPCs).    Methods A conditional allele for the photosensitive opsin chicken opsin 5(cOpn5) (Rosa26-LSL-cOpn5) was generated using CRISPR/Cas9 technology. These mice were subsequently crossed with NG2-CreERT transgenic mice to produce NG2-CreERT;cOpn5 animals. In this model, tamoxifen administration induces Cre-mediated recombination, leading to specific expression of cOpn5 in NG2-positive OPCs. The specificity and efficiency of cOpn5 expression in OPCs were confirmed by  immunofluorescent staining. Functional validation of light-induced OPC activation was performed by using calcium imaging in acute brain slices after stimulation with 470nm blue light.    Results Immunofluorescence analysis confirmed robust and specific expression of cOpn5 within NG2-positive OPCs in the brains of tamoxifentreated NG2-CreERT;cOpn5 mice. Crucially, calcium imaging of acute brain slices from these mice demonstrated a significant increase in intracellular calcium levels in cOpn5-expressing OPCs upon stimulation with 470nm blue light, indicating successful optogenetic activation.   Conclusion We have successfully generated and validated a novel transgenic mouse model (NG2-CreERT;cOpn5) that permits specific and inducible optogenetic activation of OPCs. This model provides a novel tool for subsequent in vivo studies of the role and regulating mechanisms of OPCs in the central nervous system. 

关键词

少突胶质前体细胞 / 鸡视蛋白5 / G蛋白耦联受体 / 钙成像 / 光遗传学 / 小鼠 


Key words

Oligodendrocyte precursor cell / Chicken opsin 5 / G protein-coupled receptor / Calcium imaging / Optogenetics / Mouse

引用本文

导出引用
王舒悦 申杨贝纳 黄南昕 李思维 于彬 王玉鑫 肖岚. 光特异性激活少突胶质前体细胞模型小鼠的构建与验证[J]. 解剖学报. 2025, 56(5): 507-514 https://doi.org/10.16098/j.issn.0529-1356.2025.05.001
WANG Shu-yue SHENYANG Bei-na HUANG Nan-xin LI Si-wei YU Bin WANG Yu-xin XIAO Lan. Construction and validation of a mouse model for optically activation of oligodendrocyte precursor cells[J]. Acta Anatomica Sinica. 2025, 56(5): 507-514 https://doi.org/10.16098/j.issn.0529-1356.2025.05.001
中图分类号: R322.8    Q95-33   

参考文献

 [1]Levine JM, Reynolds R, Fawcett JW. The oligodendrocyte precursor cell in health and disease[J]. Trends Neurosci, 2001, 24(1): 39-47.
 [2] Peters A. A fourth type of neuroglial cell in the adult central nervous system[J]. J Neurocytol, 2004, 33(3): 345-357.
 [3]Wang Y, Su Y, Yu G, et al. Reduced oligodendrocyte precursor cell impairs astrocytic development in early life stress[J]. Adv Sci (Weinh), 2021, 8(16): e2101181.
 [4] Yu G, Su Y, Guo C, et al. Pathological oligodendrocyte precursor cells revealed in human schizophrenic brains and trigger schizophrenia-like behaviors and synaptic defects in genetic animal model[J]. Mol Psychiatry, 2022, 27(12): 5154-5166.
 [5] Bergles DE, Roberts JD, Somogyi P, et al. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus[J]. Nature, 2000, 405(6783): 187-191.
 [6] Ge WP, Yang XJ, Zhang Z, et al. Long-term potentiation of neuron-glia synapses mediated by Ca2+-permeable AMPA receptors[J]. Science, 2006, 312(5779): 1533-1537.
 [7] Lin SC, Bergles DE. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus[J]. Nat Neurosci, 2004, 7(1): 24-32.
 [8] Zhang X, Liu Y, Hong X, et al. NG2 glia-derived GABA release tunes inhibitory synapses and contributes to stress-induced anxiety[J]. Nat Commun, 2021, 12(1): 5740.
 [9] Fenno L,Yizhar O,Deisseroth K.The development and application of optogenetics[J]. Annu Rev Neurosci, 2011, 34: 389-412.
 [10] Yizhar O, Fenno LE, Davidson TJ, et al. Optogenetics in neural systems[J]. Neuron, 2011, 71(1): 9-34.
 [11] Yu C,Cassar IR,Sambangi J,et al.Frequency-specific optogenetic deep brain stimulation of subthalamic nucleus improves parkinsonian motor behaviors[J]. J Neurosci, 2020, 40(22): 4323-4334.
 [12] Lin S, Du Y, Xia Y, et al. Advances in optogenetic studies of depressive-like behaviors and underlying neural circuit mechanisms[J]. Front Psychiatry, 2022, 13: 950910.
 [13] Andrews JP, Geng J, Voitiuk K, et al. Multimodal evaluation of network activity and optogenetic interventions in human hippocampal slices[J]. Nat Neurosci, 2024, 27(12): 2487-2499.
 [14] Geng Y, Li Z, Zhu J, et al. Advances in optogenetics applications for central nervous system injuries[J]. J Neurotrauma, 2023, 40(13-14): 1297-1316.
 [15] Tan P, He L, Huang Y, et al. Optophysiology: illuminating cell physiology with optogenetics[J]. Physiol Rev, 2022, 102(3): 1263-1325.
 [16] Oh TJ, Fan H, Skeeters SS, et al. Steering molecular activity with optogenetics: recent advances and perspectives[J]. Adv Biol (Weinh), 2021, 5(5): e2000180.
 [17] Chen W, Li C, Liang W, et al. The roles of optogenetics and technology in neurobiology: a review[J]. Front Aging Neurosci, 2022, 14: 867863.
 [18] Zhang M, Chen T, Lu X, et al. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery[J]. Signal Transduct Target Ther, 2024, 9(1): 88.
 [19] Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions[J]. Physiol Rev, 2005, 85(4): 1159-1204.
 [20] Kadamur G, Ross EM. Mammalian phospholipase C[J]. Annu Rev Physiol, 2013, 75: 127-154.
 [21] Dai R, Yu T, Weng D, et al. A neuropsin-based optogenetic tool for precise control of G(q) signaling[J]. Sci China Life Sci, 2022, 65(7): 1271-1284.
 [22] Wang F, Yang YJ, Yang N, et al. Enhancing oligodendrocyte myelination rescues synaptic loss and improves functional recovery after chronic hypoxia[J]. Neuron, 2018, 99(4): 689-701.  
 [23] Schatteman GC, Morrison-Graham K, Van Koppen A, et al. Regulation and role of PDGF receptor alpha-subunit expression during embryogenesis[J]. Development, 1992, 115(1): 123-131.
 [24] Pringle NP, Mudhar HS, Collarini EJ, et al. PDGF receptors in the rat CNS: during late neurogenesis, PDGF alpha-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage[J]. Development, 1992, 115(2): 535-551.
 [25] Oishi M, Passlick S, Yamazaki Y, et al. Separate optogenetic manipulation of Nerve/glial antigen 2 (NG2) glia and mural cells using the NG2 promoter[J]. Glia, 2023, 71(2): 317-333.

PDF(16372 KB)

Accesses

Citation

Detail

段落导航
相关文章

/