[1]Mendez MF. Early-onset Alzheimer disease [J]. Neurol Clin, 2017, 35(2): 263-281.
[2]Laferla FM, Oddo S. Alzheimer’s disease: Abeta, tau and synaptic dysfunction [J]. Trends Mol Med, 2005, 11(4): 170-176.
[3]Malik M, Parikh I, Vasquez JB, et al. Genetics ignite focus on microglial inflammation in Alzheimer’s disease [J]. Mol Neurodegener, 2015, 10: 52.
[4]Fanning S, Haque A, Imberdis T, et al. Lipidomic analysis of α-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for Parkinson treatment [J]. Mol Cell, 2019, 73(5): 1001-1014.e8.
[5]Haney MS, Pálovics R, Munson CN, et al. APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia [J]. Nature, 2024, 628(8006): 154-161.
[6]Marschallinger J, Iram T, Zardeneta M, et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain [J]. Nat Neurosci, 2020, 23(2): 194-208.
[7]Huebbe P, Rimbach G. Evolution of human apolipoprotein E (APOE) isoforms: gene structure, protein function and interaction with dietary factors [J]. Ageing Res Rev, 2017, 37: 146-161.
[8]Liu CC, Liu CC, Kanekiyo T, et al. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy [J]. Nat Rev Neurol, 2013, 9(2): 106-118.
[9]Fernandez CG, Hamby ME, Mcreynolds ML, et al. The role of APOE4 in disrupting the homeostatic functions of astrocytes and microglia in aging and Alzheimer’s disease [J]. Front Aging Neurosci, 2019, 11: 14.
[10]Wang C, Xiong M, Gratuze M, et al. Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia [J]. Neuron, 2021, 109(10): 1657-1674.e7.
[11]Kang SS, Ebbert MTW, Baker KE, et al. Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau [J]. J Exp Med, 2018, 215(9): 2235-2245.
[12]Mahley RW. Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism [J]. Arterioscler Thromb Vasc Biol, 2016, 36(7): 1305-1315.
[13]Windham IA, Cohen S. The cell biology of APOE in the brain [J]. Trends Cell Biol, 2024, 34(4): 338-348.
[14]Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets [J]. Nat Rev Mol Cell Biol, 2019, 20(3): 137-155.
[15]Olah M, Menon V, Habib N, et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease [J]. Nat Commun, 2020, 11(1): 6129.
[16]Tcw J, Qian L, Pipalia NH, et al. Cholesterol and matrisome pathways dysregulated in astrocytes and microglia [J]. Cell, 2022, 185(13): 2213-2233.e25.
[17]Machlovi SI, Neuner SM, Hemmer BM, et al. APOE4 confers transcriptomic and functional alterations to primary mouse microglia [J]. Neurobiol Dis, 2022, 164: 105615.
[18]Victor MB, Leary N, Luna X, et al. Lipid accumulation induced by APOE4 impairs microglial surveillance of neuronal-network activity [J]. Cell Stem Cell, 2022, 29(8): 1197-1212.e8.
[19]Nugent AA, Lin K, Van Lengerich B, et al. TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge [J]. Neuron, 2020, 105(5): 837-854.e9.
[20]Hou J, Chen Y, Grajales-reyes G, et al. TREM2 dependent and independent functions of microglia in Alzheimer’s disease [J]. Mol Neurodegener, 2022, 17(1): 84.
[21]Qin Q, Teng Z, Liu C, et al. TREM2, microglia, and Alzheimer’s disease [J]. Mech Ageing Dev, 2021, 195: 111438.
[22]Molloy EJ. Triggering receptor expressed on myeloid cells (TREM) family and the application of its antagonists [J]. Recent Pat Antiinfect Drug Discov, 2009, 4(1): 51-56.
[23]Li Y, Xu H, Wang H, et al. TREM2: potential therapeutic targeting of microglia for Alzheimer’s disease [J]. Biomed Pharmacother, 2023, 165: 115218.
[24]Martín MG, Pfrieger F, Dotti CG. Cholesterol in brain disease: sometimes determinant and frequently implicated [J]. EMBO Rep, 2014, 15(10): 1036-1052.
[25]Andreone BJ, Przybyla L, Llapashtica C, et al. Alzheimer’s-associated PLCγ2 is a signaling node required for both TREM2 function and the inflammatory response in human microglia [J]. Nat Neurosci, 2020, 23(8): 927-938.
[26]Li RY, Qin Q, Yang HC, et al. TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target [J]. Mol Neurodegener, 2022, 17(1): 40.
[27]Niu Z, Zhao W, Zhang Z, et al. The molecular structure of Alzheimer β-amyloid fibrils formed in the presence of phospholipid vesicles [J]. Angew Chem Int Ed Engl, 2014, 53(35): 9294-9297.
[28]Zhang Y, Chen K, Sloan SA, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex [J]. J Neurosci, 2014, 34(36): 11929-11947.
[29]Magno L, Bunney TD, Mead E, et al. TREM2/PLCγ2 signalling in immune cells: function, structural insight, and potential therapeutic modulation [J]. Mol Neurodegener, 2021, 16(1): 22.
[30]Bugge A, Feng D, Everett LJ, et al. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function [J]. Genes Dev, 2012, 26(7): 657-667.
[31]Griffin P, Dimitry JM, Sheehan PW, et al. Circadian clock protein Rev-erbα regulates neuroinflammation [J]. Proc Natl Acad Sci USA, 2019, 116(11): 5102-5107.
[32]Lee J, Kim DE, Griffin P, et al. Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer’s disease [J]. Aging Cell, 2020, 19(2): e13078.
[33]Lee J, Dimitry JM, Song JH, et al. Microglial REV-ERBα regulates inflammation and lipid droplet formation to drive tauopathy in male mice [J]. Nat Commun, 2023, 14(1): 5197.
[34]Loix M, Wouters E, Vanherle S, et al. Perilipin-2 limits remyelination by preventing lipid droplet degradation [J]. Cell Mol Life Sci, 2022, 79(10): 515.
[35]Pereira CD, Martins F, Wiltfang J, et al. ABC transporters are key players in Alzheimer’s disease [J]. J Alzheimers Dis, 2018, 61(2): 463-485.
[36]Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease [J]. Lancet, 2021, 397(10284): 1577-1590.
[37]Bellenguez C, Küçükali F, Jansen IE, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias [J]. Nat Genet, 2022, 54(4): 412-436.
[38]Tarling EJ, De Aguiar Vallim TQ, Edwards PA. Role of ABC transporters in lipid transport and human disease [J]. Trends Endocrinol Metab, 2013, 24(7): 342-350.
[39]Qian XH, Chen SY, Liu XL, et al. ABCA7-associated clinical features and molecular mechanisms in Alzheimer’s disease [J]. Mol Neurobiol, 2023, 60(10): 5548-5556.
[40]Bossaerts L, Hendrickx Van De Craen E, Cacace R, et al. Rare missense mutations in ABCA7 might increase Alzheimer’s disease risk by plasma membrane exclusion [J]. Acta Neuropathol Commun, 2022, 10(1): 43.
[41]Satoh K, Abe-Dohmae S, Yokoyama S, et al. ATP-binding cassette transporter A7 (ABCA7) loss of function alters Alzheimer amyloid processing [J]. J Biol Chem, 2015, 290(40): 24152-24165.
[42]Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia [J]. Nature, 2017, 541(7638): 481-487.
[43]Lopez-Rodriguez AB, Hennessy E, Murray CL, et al. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer’s disease: IL-1β drives amplified responses in primed astrocytes and neuronal network dysfunction [J]. Alzheimers Dement, 2021, 17(10): 1735-1755.
[44]Skelly DT, Griffin éW, Murray CL, et al. Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms [J]. Mol Psychiatry, 2019, 24(10): 1533-1548.
[45]Tönnies E, Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease [J]. J Alzheimers Dis, 2017, 57(4): 1105-1121.
[46]Ke LN, Zhao XZh, Xu JW, et al. Action of activated microglia in hippocampal neurons of rat damage induced by hypoxia[J]. Acta Anatomica Sinica, 2009,40(5):737-742. (in Chinese)
柯荔宁, 赵小贞, 徐剑文,等. 活化的小胶质细胞在大鼠海马神经元缺氧损伤中的作用 [J]. 解剖学报, 2009, 40(5): 737-742.
[47]Schlepckow K, Morenas-Rodríguez E, Hong S, et al. Stimulation of TREM2 with agonistic antibodies-an emerging therapeutic option for Alzheimer’s disease [J]. Lancet Neurol, 2023, 22(11): 1048-1060.
[48]Martens N, Schepers M, Zhan N, et al. 24(S)-saringosterol prevents cognitive decline in a mouse model for Alzheimer’s disease [J]. Mar Drugs, 2021, 19(4):190.
[49]Ullman JC, Arguello A, Getz JA, et al. Brain delivery and activity of a lysosomal enzyme using a blood-brain barrier transport vehicle in mice [J]. Sci Transl Med, 2020, 12(545): eaay1163.
[50]Yu YJ, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target [J]. Sci Transl Med, 2011, 3(84): 84ra44.