遗传因素诱导脂质积累小胶质细胞形成在阿尔茨海默病中的作用

孙弘艺 刘伟

解剖学报 ›› 2025, Vol. 56 ›› Issue (4) : 493-498.

PDF(7025 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(7025 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (4) : 493-498. DOI: 10.16098/j.issn.0529-1356.2025.04.015
综述

遗传因素诱导脂质积累小胶质细胞形成在阿尔茨海默病中的作用

  • 孙弘艺2 刘伟1*

作者信息 +

Genetic factors inducing abnormal lipid metabolism microglial cell formation in Alzheimer’s disease

  • SUN  Hong-yi2  LIU  Wei1*
Author information +
文章历史 +

摘要

阿尔茨海默病(AD)是一种老年人群中常见的中枢神经系统退行性疾病,遗传因素在其发生发展中具有重要作用。小胶质细胞作为中枢神经系统中的常驻巨噬细胞,与AD发生发展关系密切。人AD脑组织染色结果及全基因组关联研究(GWAS)表明,载脂蛋白E基因(APOE)4、髓样细胞上表达的触发受体-2(TREM2)、核受体REV-ERBα及ATP结合盒转运体(ABC) 家族等AD风险基因参与诱导小胶质细胞脂代谢紊乱与脂质积累小胶质细胞(LDAM)的产生。现从遗传学角度对LDAM产生的原因进行综述,并探讨其以神经元损害等方式诱发AD的可能机制。

Abstract

Alzheimer’s disease (AD) is one of the most common degenerative diseases of the central nervous system in the elderly population, and genetic factors play an important role in its development. Microglia, as resident macrophages in the central nervous system, are closely related to the occurrence and development of AD. Human AD brain tissue staining result  and Genome-Wide Association Studies (GWAS) indicate that AD risk genes such as apolipoprotein E (APOE)4, triggering receptor expressed on myeloid cells 2 (TREM2), REV-ERBα and ATP binding cassette (ABC) family are involved in inducing lipid metabolism disorders in microglia and the occurrence of lipid-droplet-accumulating microglia (LDAM). This article reviews the genetic causes of LDAM, and discusses the possible mechanism of AD induced by neuronal damage and other means.

关键词

遗传 / 小胶质细胞 / 脂代谢 / 阿尔茨海默病

Key words

Genetics / Microglia / Lipid metabolism / Alzheimer’s disease


引用本文

导出引用
孙弘艺 刘伟. 遗传因素诱导脂质积累小胶质细胞形成在阿尔茨海默病中的作用[J]. 解剖学报. 2025, 56(4): 493-498 https://doi.org/10.16098/j.issn.0529-1356.2025.04.015
SUN Hong-yi LIU Wei. Genetic factors inducing abnormal lipid metabolism microglial cell formation in Alzheimer’s disease[J]. Acta Anatomica Sinica. 2025, 56(4): 493-498 https://doi.org/10.16098/j.issn.0529-1356.2025.04.015
中图分类号: R3   

参考文献

[1]Mendez MF. Early-onset Alzheimer disease [J]. Neurol Clin, 2017, 35(2): 263-281.
[2]Laferla FM, Oddo S. Alzheimer’s disease: Abeta, tau and synaptic dysfunction [J]. Trends Mol Med, 2005, 11(4): 170-176.
[3]Malik M, Parikh I, Vasquez JB, et al. Genetics ignite focus on microglial inflammation in Alzheimer’s disease [J]. Mol Neurodegener, 2015, 10: 52.
[4]Fanning S, Haque A, Imberdis T, et al. Lipidomic analysis of α-synuclein neurotoxicity identifies stearoyl CoA desaturase as a target for Parkinson treatment [J]. Mol Cell, 2019, 73(5): 1001-1014.e8.
[5]Haney MS, Pálovics R, Munson CN, et al. APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia [J]. Nature, 2024, 628(8006): 154-161.
[6]Marschallinger J, Iram T, Zardeneta M, et al. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain [J]. Nat Neurosci, 2020, 23(2): 194-208.
[7]Huebbe P, Rimbach G. Evolution of human apolipoprotein E (APOE) isoforms: gene structure, protein function and interaction with dietary factors [J]. Ageing Res Rev, 2017, 37: 146-161.
[8]Liu CC, Liu CC, Kanekiyo T, et al. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy [J]. Nat Rev Neurol, 2013, 9(2): 106-118.
[9]Fernandez CG, Hamby ME, Mcreynolds ML, et al. The role of APOE4 in disrupting the homeostatic functions of astrocytes and microglia in aging and Alzheimer’s disease [J]. Front Aging Neurosci, 2019, 11: 14.
[10]Wang C, Xiong M, Gratuze M, et al. Selective removal of astrocytic APOE4 strongly protects against tau-mediated neurodegeneration and decreases synaptic phagocytosis by microglia [J]. Neuron, 2021, 109(10): 1657-1674.e7.
[11]Kang SS, Ebbert MTW, Baker KE, et al. Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau [J]. J Exp Med, 2018, 215(9): 2235-2245.
[12]Mahley RW. Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism [J]. Arterioscler Thromb Vasc Biol, 2016, 36(7): 1305-1315.
[13]Windham IA, Cohen S. The cell biology of APOE in the brain [J]. Trends Cell Biol, 2024, 34(4): 338-348.
[14]Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets [J]. Nat Rev Mol Cell Biol, 2019, 20(3): 137-155.
[15]Olah M, Menon V, Habib N, et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease [J]. Nat Commun, 2020, 11(1): 6129.
[16]Tcw J, Qian L, Pipalia NH, et al. Cholesterol and matrisome pathways dysregulated in astrocytes and microglia [J]. Cell, 2022, 185(13): 2213-2233.e25.
[17]Machlovi SI, Neuner SM, Hemmer BM, et al. APOE4 confers transcriptomic and functional alterations to primary mouse microglia [J]. Neurobiol Dis, 2022, 164: 105615.
[18]Victor MB, Leary N, Luna X, et al. Lipid accumulation induced by APOE4 impairs microglial surveillance of neuronal-network activity [J]. Cell Stem Cell, 2022, 29(8): 1197-1212.e8.
[19]Nugent AA, Lin K, Van Lengerich B, et al. TREM2 regulates microglial cholesterol metabolism upon chronic phagocytic challenge [J]. Neuron, 2020, 105(5): 837-854.e9.
[20]Hou J, Chen Y, Grajales-reyes G, et al. TREM2 dependent and independent functions of microglia in Alzheimer’s disease [J]. Mol Neurodegener, 2022, 17(1): 84.
[21]Qin Q, Teng Z, Liu C, et al. TREM2, microglia, and Alzheimer’s disease [J]. Mech Ageing Dev, 2021, 195: 111438.
[22]Molloy EJ. Triggering receptor expressed on myeloid cells (TREM) family and the application of its antagonists [J]. Recent Pat Antiinfect Drug Discov, 2009,  4(1): 51-56.
[23]Li Y, Xu H, Wang H, et al. TREM2: potential therapeutic targeting of microglia for Alzheimer’s disease [J]. Biomed Pharmacother, 2023, 165: 115218.
[24]Martín MG, Pfrieger F, Dotti CG. Cholesterol in brain disease: sometimes determinant and frequently implicated [J]. EMBO Rep, 2014, 15(10): 1036-1052.
[25]Andreone BJ, Przybyla L, Llapashtica C, et al. Alzheimer’s-associated PLCγ2 is a signaling node required for both TREM2 function and the inflammatory response in human microglia [J]. Nat Neurosci, 2020, 23(8): 927-938.
[26]Li RY, Qin Q, Yang HC, et al. TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target [J]. Mol Neurodegener,  2022, 17(1): 40.
[27]Niu Z, Zhao W, Zhang Z, et al. The molecular structure of Alzheimer β-amyloid fibrils formed in the presence of phospholipid vesicles [J]. Angew Chem Int Ed  Engl, 2014, 53(35): 9294-9297.
[28]Zhang Y, Chen K, Sloan SA, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex [J]. J Neurosci, 2014, 34(36): 11929-11947.
[29]Magno L, Bunney TD, Mead E, et al. TREM2/PLCγ2 signalling in immune cells: function, structural insight, and potential therapeutic modulation [J]. Mol Neurodegener, 2021, 16(1): 22.
[30]Bugge A, Feng D, Everett LJ, et al. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function [J]. Genes Dev, 2012, 26(7):  657-667.
[31]Griffin P, Dimitry JM, Sheehan PW, et al. Circadian clock protein Rev-erbα regulates neuroinflammation [J]. Proc Natl Acad Sci USA, 2019, 116(11): 5102-5107.
[32]Lee J, Kim DE, Griffin P, et al. Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer’s disease [J]. Aging Cell, 2020, 19(2): e13078.
[33]Lee J, Dimitry JM, Song JH, et al. Microglial REV-ERBα regulates inflammation and lipid droplet formation to drive tauopathy in male mice [J]. Nat Commun,  2023, 14(1): 5197.
[34]Loix M, Wouters E, Vanherle S, et al. Perilipin-2 limits remyelination by preventing lipid droplet degradation [J]. Cell Mol Life Sci, 2022, 79(10): 515.
[35]Pereira CD, Martins F, Wiltfang J, et al. ABC transporters are key players in Alzheimer’s disease [J]. J Alzheimers Dis, 2018, 61(2): 463-485.
[36]Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease [J]. Lancet, 2021, 397(10284): 1577-1590.
[37]Bellenguez C, Küçükali F, Jansen IE, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias [J]. Nat Genet, 2022, 54(4): 412-436.
[38]Tarling EJ, De Aguiar Vallim TQ, Edwards PA. Role of ABC transporters in lipid transport and human disease [J]. Trends Endocrinol Metab, 2013, 24(7): 342-350.
[39]Qian XH, Chen SY, Liu XL, et al. ABCA7-associated clinical features and molecular mechanisms in Alzheimer’s disease [J]. Mol Neurobiol, 2023, 60(10): 5548-5556.
[40]Bossaerts L, Hendrickx Van De Craen E, Cacace R, et al. Rare missense mutations in ABCA7 might increase Alzheimer’s disease risk by plasma membrane exclusion [J]. Acta Neuropathol Commun, 2022, 10(1): 43.
[41]Satoh K, Abe-Dohmae S, Yokoyama S, et al. ATP-binding cassette transporter A7 (ABCA7) loss of function alters Alzheimer amyloid processing [J]. J Biol Chem, 2015, 290(40): 24152-24165.
[42]Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia [J]. Nature, 2017, 541(7638): 481-487.
[43]Lopez-Rodriguez AB, Hennessy E, Murray CL, et al. Acute systemic inflammation exacerbates neuroinflammation in Alzheimer’s disease: IL-1β drives amplified responses in primed astrocytes and neuronal network dysfunction [J]. Alzheimers Dement, 2021, 17(10): 1735-1755.
[44]Skelly DT, Griffin éW, Murray CL, et al. Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms [J]. Mol Psychiatry, 2019, 24(10): 1533-1548.
[45]Tönnies E, Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease [J]. J Alzheimers Dis, 2017, 57(4): 1105-1121.
[46]Ke LN, Zhao XZh, Xu JW, et al. Action of activated microglia in hippocampal neurons of rat damage induced by hypoxia[J]. Acta Anatomica Sinica, 2009,40(5):737-742.  (in Chinese)
柯荔宁, 赵小贞, 徐剑文,等. 活化的小胶质细胞在大鼠海马神经元缺氧损伤中的作用 [J]. 解剖学报, 2009, 40(5): 737-742.
[47]Schlepckow K, Morenas-Rodríguez E, Hong S, et al. Stimulation of TREM2 with agonistic antibodies-an emerging therapeutic option for Alzheimer’s disease [J]. Lancet Neurol, 2023, 22(11): 1048-1060.
[48]Martens N, Schepers M, Zhan N, et al. 24(S)-saringosterol prevents cognitive decline in a mouse model for Alzheimer’s disease [J]. Mar Drugs, 2021, 19(4):190.
[49]Ullman JC, Arguello A, Getz JA, et al. Brain delivery and activity of a lysosomal enzyme using a blood-brain barrier transport vehicle in mice [J]. Sci Transl Med, 2020, 12(545): eaay1163.
[50]Yu YJ, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target [J]. Sci Transl Med, 2011, 3(84): 84ra44.


PDF(7025 KB)

Accesses

Citation

Detail

段落导航
相关文章

/