SLIT-ROBO Rho GTPase激活蛋白2在肌萎缩侧索硬化症运动神经元退变中的作用

王晨晨 张雪 高学帅 白雪 闫秋鹏 王雪枚 刘金梦 陈燕春

解剖学报 ›› 2025, Vol. 56 ›› Issue (4) : 413-420.

PDF(3500 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(3500 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (4) : 413-420. DOI: 10.16098/j.issn.0529-1356.2025.04.005
神经生物学

SLIT-ROBO Rho GTPase激活蛋白2在肌萎缩侧索硬化症运动神经元退变中的作用

  • 王晨晨1,2 张雪1,2 高学帅1,2 白雪1,2 闫秋鹏2 王雪枚1,2 刘金梦1,2 陈燕春1,2*

作者信息 +

Role of SLIT-ROBO Rho GTPase-activating protein 2 in motor neuron degeneration in amyotrophic lateral sclerosis

  • WANG  Chen-chen1,2  ZHANG  Xue1,2  GAO  Xue-shuai1,2  BAI  Xue1,2 YAN  Qiu-peng2  WANG  Xue-mei1,2  LIU  Jin-meng1,2  CHEN  Yan-chun1,2*
Author information +
文章历史 +

摘要

目的 探讨SLIT-ROBO Rho GTPase激活蛋白2(srGAP2)在肌萎缩侧索硬化症(ALS)转基因小鼠脊髓运动神经元退变中的作用。方法  应用生物信息学分析srGAP2在人超氧化物歧化酶1(hSOD1)突变型ALS转基因小鼠脊髓中的表达变化。选取hSOD1G93A突变型ALS转基因小鼠进行实验验证,以同窝野生型(WT)小鼠为对照组,分为发病前期、早期、中期和晚期4组共36对,应用Real-time PCR、Western blotting和免疫荧光双标染色检测小鼠脊髓内srGAP2的表达变化及细胞定位。建立hSOD1G93A突变型NSC34运动神经元样细胞模型,体外实验检测srGAP2的表达变化,检测过表达srGAP2对hSOD1G93A突变型NSC34细胞活力的影响和细胞突起生长的影响。结果  生物信息学分析发现,srGAP2在hSOD1突变型ALS转基因小鼠脊髓中异常低表达。动物实验验证发现,与WT小鼠相比,在发病早期、中期和晚期hSOD1G93A突变型ALS转基因小鼠脊髓中srGAP2的mRNA水平和蛋白水平表达均降低。相较于WT小鼠,hSOD1G93A突变型ALS转基因小鼠脊髓前角srGAP2+/NeuN+双阳性细胞中srGAP2 积分吸光度(IA)值降低,srGAP2+/GFAP+双阳性细胞中srGAP2 IA值升高;与hSOD1WT NSC34细胞相比,hSOD1G93A突变型NSC34细胞中srGAP2的mRNA和蛋白表达均降低。过表达srGAP2可升高hSOD1G93A突变型NSC34细胞的活力,上调突起相关蛋白βⅢ-tubulin、生长相关联蛋白43(GAP43)的表达。结论  srGAP2低表达与ALS疾病进展密切相关,过表达srGAP2可促进突起生长,对ALS脊髓运动神经元具有保护作用

Abstract

Objective To explore the role of SLIT-ROBO Rho GTPase-activating protein 2 (srGAP2) in spinal motor neuron degeneration in amyotrophic lateral sclerosis (ALS).   Methods   Applied bioinformatics analysis to investigate the expression changes of srGAP2 in the spinal cord of human superoxide dismutase 1(hSOD1) mutant ALS transgenic mice. hSOD1G93A mutant ALS transgenic mice were selected for animal experimental validation, with littermate wild type(WT) mice serving as the control group. A total of 36 pairs were divided into four groups, namely the pre-onset stage, early-onset stage, mid-onset stage, and late-onset stage. The expression changes and cellular localization of srGAP2 in the spinal cord of ALS mice were detected by Real-time PCR, Western blotting and immunofluorescent double-label staining. The hSOD1G93A mutant NSC34 motor neuron-like cell model was established, and in vitro experiments were carried out to detect the changes in srGAP2 expression, and the effects of srGAP2 over-expression on the viability of hSOD1G93A mutant NSC34 cells and the growth of cell protrusions.   Results  Bioinformatics analysis revealed abnormally low expression of srGAP2 in the spinal cord of hSOD1 mutant ALS  mice. Animal experiments verified that compared with the WT mice, the expression of srGAP2 was reduced at both mRNA level and protein level in the spinal cord of hSOD1G93A mutant ALS transgenic mice at early-onset, mid-onset and late-onset stages. Compared with the WT mice, srGAP2 integral absorbance (IA) values in srGAP2+/NeuN+ double-positive cells in the anterior horn of the spinal cord of hSOD1G93A mutant ALS transgenic mice were lower, srGAP2 IA values in srGAP2+/GFAP+ double-positive cells were higher; Compared with the hSOD1WT NSC34 cells, the expression of srGAP2 was reduced at both mRNA level and protein level in hSOD1G93A mutant NSC34 cells. Over-expression of srGAP2 elevated the viability of hSOD1G93A mutant NSC34 cells, and up-regulated the expression level of synapse-related protein βⅢ-tubulin and growth associated protein 43(GAP43).   Conclusion   Low expression of srGAP2 is closely associated with the progression of ALS, while over-expression of srGAP2 can promote outgrowth of cell protrusions and exert a protective effect on spinal motor neurons in ALS. 

关键词

SLIT-ROBO Rho GTPase激活蛋白2 / 肌萎缩侧索硬化症 / 脊髓 / NSC34细胞 / 免疫印迹法 / 转基因小鼠



Key words

SLIT-ROBO Rho GTPase-activating protein 2 / Amyotrophic lateral sclerosis / Spinal cord / NSC34 cell / Western blotting / Transgenic mouse


引用本文

导出引用
王晨晨 张雪 高学帅 白雪 闫秋鹏 王雪枚 刘金梦 陈燕春. SLIT-ROBO Rho GTPase激活蛋白2在肌萎缩侧索硬化症运动神经元退变中的作用[J]. 解剖学报. 2025, 56(4): 413-420 https://doi.org/10.16098/j.issn.0529-1356.2025.04.005
WANG Chen-chen ZHANG Xue GAO Xue-shuai BAI Xue YAN Qiu-peng WANG Xue-mei LIU Jin-meng CHEN Yan-chun. Role of SLIT-ROBO Rho GTPase-activating protein 2 in motor neuron degeneration in amyotrophic lateral sclerosis[J]. Acta Anatomica Sinica. 2025, 56(4): 413-420 https://doi.org/10.16098/j.issn.0529-1356.2025.04.005
中图分类号: R322.8   

参考文献

[1]Gendron TF, Petrucelli L. Immunological drivers of amyotrophic lateral sclerosis[J]. Sci Transl Med, 2023,15(721): eadj9332.
[2]Goutman SA, Hardiman O, Al-Chalabi A, et al. Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis[J]. Lancet Neurol, 2022,21(5):480-493.
[3]Akçimen F, Lopez ER, Landers JE, et al. Amyotrophic lateral sclerosis: translating genetic discoveries into therapies[J]. Nat Rev Genet, 2023, 24(9):642-658.
[4]Li Y, Qiao L, Bai Y, et al. Identification of SRGAP2 as a potential oncogene and a prognostic biomarker in hepatocellular carcinoma[J]. Life Sci, 2021, 277:119592.
[5]Gan Y, Cao Y, Zhang Z, et al. Srgap2 suppression ameliorates retinal ganglion cell degeneration in mice[J]. Neural Regen Res, 2023, 18(10):2307-2314.
[6]Li C, Zheng Z, Wu X, et al. Stiff matrix induced srGAP2 tension gradients control migration direction in triple-negative breast cancer[J]. Theranostics, 2023,13(1):59-76.
[7]Guerrier S, Coutinho-Budd J, Sassa T, et al. The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis[J]. Cell, 2009,138(5):990-1004.
[8]Soderling SH, Guire ES, Kaech S, et al. A WAVE-1 and WRP signaling complex regulates spine density, synaptic plasticity, and memory[J]. J Neurosci, 2007,27(2):355-365.
[9]Van Daele SH, Masrori P, Van Damme P, et al. The sense of antisense therapies in ALS[J]. Trends Mol Med, 2024, 30(3):252-262.
[10]Bravo-Hernandez M, Tadokoro T, Navarro MR, et al. Spinal subpial delivery of AAV9 enables widespread gene silencing and blocks motoneuron degeneration in ALS[J]. Nat Med, 2020, 26(1):118-130.
[11]Zhou G, Soufan O, Ewald J, et al. Network Analyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis[J]. Nucleic Acids Res, 2019, 47(W1):W234-W241.
[12]Chen Y, Wang Q, Wang Q, et al. DDX3 binding with CK1ε was closely related to motor neuron degeneration of ALS by affecting neurite outgrowth[J]. Am J Transl Res, 2017, 9(10):4627-4639.
[13]Wang XM, Qi B, Huo ZJ, et al. Expressions of RAC1、RAC3 and IQGAP1 in the spinal cord of SOD1G93A mutant mice[J]. Chinese Journal of Neuroanatomy, 2022,38(5):499-506.(in Chinese)
王雪枚,齐波,霍姿君,等. RAC1、RAC3和IQGAP1在SOD1G93A突变小鼠脊髓中的表达[J].神经解剖学杂志, 2022, 38(5):499-506.
[14]Ding K, Zhang FP, Qi GX, et al. Role of zinc finger protein 36, C3H type-like 1 mediating astrocytes activation in motor neuron degeneration in amyotrophic lateral sclerosis [J]. Acta Anatomica Sinica, 2022, 53(3):273-280.(in Chinese)
丁康,张烽萍,齐高秀,等. C3H1型锌指结合蛋白36介导的星形胶质细胞活化在肌萎缩侧索硬化症运动神经元退变中的作用[J].解剖学报, 2022, 53(3):273-280.
[15]Chen YCh, Guan YJ, Liu YX, et al. Protective role of AKT-glycogen synthase kinase-3β signaling pathway in the N2a cell with SOD1G93Amutation [J]. Acta Anatomica Sinica, 2016,47(4):433-441.(in Chinese)
陈燕春,管英俊,刘永新,等. AKT-糖原合成激酶-3β信号通路对SOD1G93A突变N2a细胞的保护作用[J]. 解剖学报, 2016, 47(4):433-441.
[16]Liu J, Zhou F, Chen Y, et al. Wnt5a protects motor neurons in amyotrophic lateral sclerosis by regulating the Wnt/Ca2+ signaling pathway[J]. Am J Transl Res, 2022,14(8):5343-5362.
[17]Liu X, Henty-Ridilla JL. Multiple roles for the cytoskeleton in ALS[J]. Exp Neurol, 2022,355:114143.
[18]Li M, Peng L, Wang Z, et al. Roles of the cytoskeleton in human diseases[J]. Mol Biol Rep, 2023, 50(3):2847-2856.
[19]Oberstadt M, Claßen J, Arendt T, et al. TDP-43 and cytoskeletal proteins in ALS[J]. Mol Neurobiol, 2018, 55(4):3143-3151.
[20]Lucas B, Hardin J. Mind the (sr)GAP-roles of Slit-Robo GAPs in neurons, brains and beyond[J]. J Cell Sci, 2017, 130 (23), 3965-3974.
[21]Vahsen BF, Gray E, Thompson AG, et al. Non-neuronal cells in amyotrophic lateral sclerosis -from pathogenesis to biomarkers[J]. Nat Rev Neurol, 2021,17(6):333-348.
[22]Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes[J]. Transl Neurodegener, 2020, 9(1):42.
[23]Uribe-Salazar JM, Kaya G, Weyenberg K, et al. Zebrafish models of human-duplicated SRGAP2 reveal novel functions in microglia and visual system development[J]. bioRxiv [Preprint], 2024: 2024.09.11.612570.
[24]Jiao Q, Wang L, Zhang Z, et al. Dynamic expression of srGAP2 in cell nuclei and cytoplasm during the differentiation of rat neural stem cells in vitro[J]. Mol Med Rep, 2016, 14(5):4599-4605.


PDF(3500 KB)

Accesses

Citation

Detail

段落导航
相关文章

/