高果糖饮食对小鼠海马脑区神经代谢物及焦虑与抑郁样行为的影响

张姗姗 刘颖 张育文 王鹤 李文生 刘琼

解剖学报 ›› 2025, Vol. 56 ›› Issue (4) : 381-388.

PDF(1535 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(1535 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (4) : 381-388. DOI: 10.16098/j.issn.0529-1356.2025.04.001
神经生物学

高果糖饮食对小鼠海马脑区神经代谢物及焦虑与抑郁样行为的影响

  • 张姗姗1 刘颖2 张育文2 王鹤2 李文生1,3,4* 刘琼1,3*

作者信息 +

Effects of high-fructose diet on hippocampal neurometabolites and anxiety and depression-like behaviors in mice

  • ZHANG  Shan-shan1  LIU  Ying2  ZHANG  Yu-wen2  WANG  He2  LI  Wen-sheng1,3,4*  LIU  Qiong1,3*
Author information +
文章历史 +

摘要

目的 探讨短期和长期高果糖饮食对小鼠海马脑区神经代谢物及焦虑与抑郁样行为的影响,以期揭示高果糖饮食在情绪障碍性疾病中的潜在机制,并为预防和治疗相关疾病提供实验依据。方法  实验选用C57BL/6J雄性小鼠,随机分为两组:对照组(标准饮食,n=10)和实验组(高果糖饮食,n=10)。每组小鼠分别在接受4周(短期)和8周(长期)饮食干预后进行体重及空腹血糖的检测,并通过氢质子磁共振波谱成像(1H-MRS)检测海马脑区代谢物水平,之后进行旷场实验、强迫游泳实验和悬尾实验评估小鼠的焦虑及抑郁样行为表现。结果  高果糖饮食4周诱发小鼠海马神经代谢物谷氨酸升高,而谷胱甘肽和肌醇降低,并伴随强迫游泳中的不动时间缩短。高果糖饮食8周导致体重和糖代谢异常,海马谷氨酸水平反转性降低,并诱发明显的焦虑样行为,而海马谷氨酸水平的降低与焦虑样行为的增强成显著负相关。结论  海马谷氨酸水平异常可能是长期高果糖饮食诱导焦虑样行为的关键因素之一。

Abstract

 Objective  To investigate the effects of short-term and long-term high-fructose diets on hippocampal neurometabolites and anxiety and depression-like behaviors in mice, revealing the potential mechanisms of high-fructose diets in mood disorders and providing a experimental basis for the prevention and treatment of related diseases.  Methods C57BL/6J male mice were randomly divided into two groups, control group (standard diet, n=10) and experimental group (high-fructose diet, n=10). Four weeks (short-term) and eight weeks (long-term) later, each group of mice was examined for body weight and fasting blood glucose, and neurometabolites levels in the hippocampus were detected by hydrogen proton magnetic resonance spectroscopy(1H-MRS), followed by the open-field test, the forced-swimming test, and the tail-suspension test to evaluate anxiety-like and depression-like behaviors.   Results  High fructose diet for 4 weeks elevated glutamate levels and reduced glutathione and myo-inositol levels in mice, accompanied by shortened immobility time in the forced swim test. High fructose diet for 8 weeks not only led to abnormalities in body weight and glucose metabolism but also caused a reversal decrease in hippocampal glutamate levels and induced significant anxiety-like behaviors, and the decrease in hippocampal glutamate levels showed a significant negative correlation with the enhancement of anxiety-like behaviors.   Conclusion   Altered hippocampal glutamate levels may be a key contributing factor to the anxiety-like behaviors induced by long-term high-fructose diet.

关键词

高果糖饮食 / 焦虑 / 海马 / 神经代谢物 / 氢质子磁共振波谱成像 / 小鼠


Key words

High-fructose diet
/ Anxiety / Hippocampus / Neurometabolity / Hydrogen proton magnetic resonance spectroscopy / Mouse

引用本文

导出引用
张姗姗 刘颖 张育文 王鹤 李文生 刘琼. 高果糖饮食对小鼠海马脑区神经代谢物及焦虑与抑郁样行为的影响[J]. 解剖学报. 2025, 56(4): 381-388 https://doi.org/10.16098/j.issn.0529-1356.2025.04.001
ZHANG Shan-shan LIU Ying ZHANG Yu-wen WANG He LI Wen-sheng LIU Qiong. Effects of high-fructose diet on hippocampal neurometabolites and anxiety and depression-like behaviors in mice[J]. Acta Anatomica Sinica. 2025, 56(4): 381-388 https://doi.org/10.16098/j.issn.0529-1356.2025.04.001
中图分类号: R322.8    R749.4   

参考文献

[1]Abdelmalek MF, Suzuki A, Guy C, et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease [J]. Hepatology, 2010, 51(6): 1961-1971.
[2]Jung S, Bae H, Song WS, et al. Dietary fructose and fructose-induced pathologies [J]. Annu Rev Nutr, 2022, 42: 45-66.
[3]Lim JS, Mietus-Snyder M, Valente A, et al. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome [J]. Nat Rev Gastroenterol Hepatol, 2010, 7(5): 251-264.
[4]Tappy L. Metabolism of sugars: a window to the regulation of glucose and lipid homeostasis by splanchnic organs [J]. Clin Nutr, 2021, 40(4): 1691-1698.
[5]Tappy L, Le KA. Metabolic effects of fructose and the worldwide increase in obesity [J]. Physiol Rev, 2010, 90(1): 23-46.
[6]Li Y, Lv MR, Wei YJ, et al. Dietary patterns and depression risk: a meta-analysis [J]. Psychiatry Res, 2017, 253: 373-382.
[7]Cong X, Tracy M, Edmunds LS, et al. The relationship between inflammatory dietary pattern in childhood and depression in early adulthood [J]. Brain Behav Immun Health, 2020, 2: 100017.
[8]Van Der Borght K, Kohnke R, Goransson N, et al. Reduced neurogenesis in the rat hippocampus following high fructose consumption [J]. Regul Pept, 2011, 167(1): 26-30.
[9]Li JM, Yu R, Zhang LP, et al. Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: a benefit of short-chain fatty acids [J]. Microbiome, 2019, 7(1): 98.
[10]Solanki N, Salvi A, Patki G, et al. Modulating oxidative stress relieves stress-induced behavioral and cognitive impairments in rats [J]. Int J Neuropsychopharmacol, 2017, 20(7): 550-561.
[11]Gancheva S, Galunska B, Zhelyazkova-avova M. Diets rich in saturated fat and fructose induce anxiety and depression-like behaviours in the rat: is there a role for lipid peroxidation [J]? Int J Exp Pathol, 2017, 98(5): 296-306.
[12]Spagnuolo MS, Bergamo P, Crescenzo R, et al. Brain Nrf2 pathway, autophagy, and synaptic function proteins are modulated by a short-term fructose feeding in young and adult rats [J]. Nutr Neurosci, 2020, 23(4): 309-320.
[13]Martinez-Orozco H, Reyes-Castro LA, Lomas-ria C, et al. High-at and combined high-at-igh-ructose diets impair episodic-ike memory and decrease glutamate and glutamine in the hippocampus of adult mice [J]. Nutr Neurosci, 2022, 25(12): 2479-2489.
[14]Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments [J]. Neuron, 2019, 102(1): 75-90.
[15]Taskinen MR, Packard CJ, Boren J. Dietary fructose and the metabolic syndrome [J]. Nutrients, 2019, 11(9):1987.
[16]Merino B, Fernandez-Diaz CM, Cozar-Castellano I, et al. Intestinal fructose and glucose metabolism in health and disease [J]. Nutrients, 2019, 12(1):94.
[17]Crescenzo R, Bianco F, Coppola P, et al. Increased skeletal muscle mitochondrial efficiency in rats with fructose-induced alteration in glucose tolerance [J]. Br J Nutr, 2013, 110(11): 1996-2003.
[18]Aragno M, Mastrocola R. Dietary sugars and endogenous formation of advanced glycation endproducts: emerging mechanisms of disease [J]. Nutrients, 2017, 9(4):385.
[19]Sunehag AL, Toffolo G, Campioni M, et al. Short-term high dietary fructose intake had no effects on insulin sensitivity and secretion or glucose and lipid metabolism in healthy, obese adolescents [J]. J Pediatr Endocrinol Metab, 2008, 21(3): 225-235.
[20]Johnson RJ, Lanaspa MA, Sanchez-Lozada LG, et al. The fructose survival hypothesis for obesity [J]. Philos Trans R Soc Lond B Biol Sci, 2023, 378(1885): 20220230.
[21]Weaver CM. Fructose sources have an unequal impact on adiposity-are we surprised [J] ? Am J Clin Nutr, 2023, 117(4): 645-646.
[22]Sievenpiper JL, De Souza RJ, Mirrahimi A, et al. Effect of fructose on body weight in controlled feeding trials: a systematic review and meta-nalysis [J]. Ann Intern Med, 2012, 156(4): 291-304.
[23]Sigala DM, Widaman AM, Hieronimus B, et al. Effects of consuming sugar-weetened beverages for 2 weeks on 24- circulating leptin profiles, ad libitum food intake and body weight in young adults [J]. Nutrients, 2020, 12(12) 3893.
[24]Ferraris RP, Choe JY, Patel CR. Intestinal absorption of fructose [J]. Annu Rev Nutr, 2018, 38: 41-67.
[25]Yin Q, Ma Y, Hong Y, et al. Lycopene attenuates insulin signaling deficits, oxidative stress, neuroinflammation, and cognitive impairment in fructose-rinking insulin resistant rats [J]. Neuropharmacology, 2014, 86: 389-396.
[26]Mastrocola R, Nigro D, Cento AS, et al. High-ructose intake as risk factor for neurodegeneration: key role for carboxy methyllysine accumulation in mice hippocampal neurons [J]. Neurobiol Dis, 2016, 89: 65-75.
[27]Hamrani DEl, Gin H, Gallis JL, et al. Consumption of alcopops during brain maturation period: higher impact of fructose than ethanol on brain metabolism [J]. Front Nutr, 2018, 5: 33.
[28]Nakahara T, Tsugawa S, Noda Y, et al. Glutamatergic and GABAergic metabolite levels in schizophrenia-spectrum disorders: a meta-nalysis of (1)H-magnetic resonance spectroscopy studies [J]. Mol Psychiatry, 2022, 27(1): 744-757.
[29]Zeredo JL, Quah SKL, Wallis CU, et al. Glutamate within the marmoset anterior hippocampus interacts with area 25 to regulate the behavioral and cardiovascular correlates of high-trait anxiety [J]. J Neurosci, 2019, 39(16): 3094-3107.


PDF(1535 KB)

Accesses

Citation

Detail

段落导航
相关文章

/