基于多尺度病变注意力网络的骨肉瘤化疗效果影像评估

臧杰 宋泽群 汤振宇 何方舟 丁朝伟 汪凌峰 汤小东

解剖学报 ›› 2025, Vol. 56 ›› Issue (1) : 30-36.

PDF(1941 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(1941 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (1) : 30-36. DOI: 10.16098/j.issn.0529-1356.2025.01.004
肿瘤学专栏

基于多尺度病变注意力网络的骨肉瘤化疗效果影像评估

  • 臧杰宋泽群汤振宇何方舟丁朝伟汪凌峰2* 汤小东1*
作者信息 +

Imaging assessment of osteosarcoma chemotherapy efficacy based on multi-scale lesion attention network

  • ZANG Jie1  SONG Ze-qun2  TANG Zhen-yu HE Fang-zhou DING Chao-wei1  WANG Ling-feng2* TANG Xiao-dong1*
Author information +
文章历史 +

摘要

目的 针对现有方法骨肉瘤评估精度低的问题,提出一种基于深度学习的高精度骨肉瘤化疗效果影像评估方法用于临床治疗。方法骨肉瘤发病率低,导致其影像数据规模小,且数据类别存在不平衡问题。本研究结合深度学习与临床医疗信息,结合了BoneGAN的骨肉瘤生成模块和尺度病变信息捕获模块,提出基于多尺度病变注意力网络的骨肉瘤化疗效果的深度学习评估网络OMLA-Net,通过预训练与泛化损失训练,实现了集成数据增广与聚焦病变信息的计算机辅助骨肿瘤评估。结果 本研究以40例骨肉瘤磁共振医学影像数据为基础,在生成的数据集上进行对比试验,OMLA-Net评估的准确率和F1分数等评估效果 方面优于SOTA方法Conv-LSTM-GAN,且差异具有统计学意义(P<0.05);后续的K-fold交叉验证消融实验进一步证明了OMLA-Net提出的各个模块的有效性。结论 OMLA-Net能够有效地进行骨肉瘤化疗效果影像评估,为未来的临床应用提供了新的思路。


Abstract

Objective To propose a high-precision deep learning-based image assessment method  of osteosarcoma chemotherapy efficacy for clinical treatment, as existing methos have low accuracy of osteosarcoma assessment.   Methods The low incidence of osteosarcoma led to the small scale of its imaging data and the problem of imbalance in data categories. This study combined deep learning with clinical medical information, combined the bone sarcoma generation module of BoneGAN and the scale lesion information capture module, and proposed OMLA-Net, a deep learning assessment network for chemotherapy effect of bone sarcoma based on multi-scale lesion attention network, which achieved computer-aided bone tumor assessment with integrated data augmentation and focused lesion information through pre-training and generalized loss training. Results  In this study, 40 cases of osteosarcoma MRI data were used as the basis for the comparison test on the generated dataset, and the OMLA-Net assessment outperformed the SOTA method  Conv-LSTM-GAN in terms of the assessment effects such as accuracy and F1 scores, and the difference was statistically significant (P<0.05); the subsequent K-fold cross-validation ablation experiments further demonstrated the effectiveness of each module proposed by OMLA-Net.   Conclusion   OMLA-Net can effectively perform the impact assessment of chemotherapy effect on osteosarcoma, which provides a new idea for subsequent clinical application.

关键词

骨肉瘤 / 化疗评估 / 临床应用 / 多尺度病变注意力

Key words

Osteosarcoma / Chemotherapy assessment / Clinical application / Multiscale lesion attention 


引用本文

导出引用
臧杰 宋泽群 汤振宇 何方舟 丁朝伟 汪凌峰 汤小东. 基于多尺度病变注意力网络的骨肉瘤化疗效果影像评估[J]. 解剖学报. 2025, 56(1): 30-36 https://doi.org/10.16098/j.issn.0529-1356.2025.01.004
ZANG Jie SONG Ze-qun TANG Zhen-yu HE Fang-zhou DING Chao-wei WANG Ling-feng TANG Xiao-dong. Imaging assessment of osteosarcoma chemotherapy efficacy based on multi-scale lesion attention network[J]. Acta Anatomica Sinica. 2025, 56(1): 30-36 https://doi.org/10.16098/j.issn.0529-1356.2025.01.004
中图分类号: R738.1   

参考文献

[1]Guerrero-Pérez F, Pia Marengo A, Vidal N, et al. Primary tumors of the posterior pituitary: a systematic review[J]. Rev Endocr Metab Disord, 2019, 20(2): 219-238.
[2]Hu Z, Li Z, Ma Z, et al. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases[J]. Nat Genet, 2020, 52(7):701-708.
[3]Coleman RE, Guise TA, Lipton A, et al. Advancing treatment for metastatic bone cancer: consensus recommendations from the second cambridge conference[J]. Clin Cancer Res, 2008, 14(20): 6387-6395.
[4]Morello E, Martano M, Buracco P. Biology, diagnosis and treatment of canine appendicular osteosarcoma: similarities and differences with human osteosarcoma[J]. Vet J, 2011, 189(3):268-277.
[5]Dorfman HD, Czerniak B. Bone cancers[J]. Cancer, 1995, 75(Suppl): 203-210.
[6]Ottaviani G, Jaffe N. The epidemiology of osteosarcoma[J]. Cancer Treat Res, 2009,152:3-13.
[7]Ahmed, M Seraj R, Shamsul Islam SM. The k-means algorithm: a comprehensive survey and performance evaluation[J]. Electronics, 2020, 9(8): 1295.
[8]Chandra, MA,Bedi SS. Survey on SVM and their application in image classification[J]. Int J Inf Technol, 2021,13(5): 1-11.
[9]Kuang D, Michoski C. SEER-net: simple EEG-based recognition network[J]. Biomed Signal Process Control, 2023, 83: 104620.
[10]Qin X, Xu D, Dong X, et al. EEG signal classification based on improved variational mode decomposition and deep forest[J]. Biomed Signal Process Control, 2023, 83: 104644.
[11]Zhang H, Song R, Wang L, et al. Classification of brain disorders in rs-fMRI via local-to-global graph neural networks[J]. IEEE Trans Med Imaging, 2023, 42(2): 444-455.
[12]Mei J, Cheng MM, Xu G, et al. SANet: a slice-aware network for pulmonary nodule detection[J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(8): 4374-4387.
[13]Zhao D, Liu Y, Yin H, et al. An attentive and adaptive 3D CNN for automatic pulmonary nodule detection in CT image[J]. Expert Syst Appl, 2023,211: 118672.
[14]Yi L, Zhang L, Xu X, et al. Multi-label softmax networks for pulmonary nodule classification using unbalanced and dependent categories[J]. IEEE Trans Med Imaging, 2023, 42(1): 317-328.
[15]Liu Z, Xiong R, Jiang T. CI-net: clinical-inspired network for automated skin lesion recognition[J]. IEEE Trans Med Imaging, 2023,42(3): 619-632.
[16]Abdar M, Samami M, Mahmoodaba SD, et al. Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning[J]. Comput Biol Med, 2021, 135: 104418.
[17]Balaha HM, Hassan A. Skin cancer diagnosis based on deep transfer learning and sparrow search algorithm[J]. Neural Comput Appl, 2023,35(1): 815-853.
[18]Xu Z, Niu K, Tang S, et al. Bone tumor necrosis rate detection in few-shot x-rays based on deep learning[J]. Comput Med Imaging Graph, 2022,102: 102141.
[19]Xue S, Liu Z, Chen F, et al. Accelerating diffusion sampling with optimized time steps[J]. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, 2024: 8292-8301.
[20]Graikos A, Yellapragada S, Le MQ, et al. Learned representation-guided diffusion models for large-image generation[J]. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, 2024: 8532-8542.
[21]Zhan, C, Lin, Y, Wang, G, et al. MedM2G: unifying medical multi-modal generation via cross-guided diffusion with visual invariant[J]. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, 2024: 11502-11512.

基金

北京大学医学部引导专项经费;中央高校基本科研业务费专项资金资助

PDF(1941 KB)

Accesses

Citation

Detail

段落导航
相关文章

/