二甲双胍下调上游移码蛋白1表达抑制结直肠癌细胞增殖的机制

杨佳辰 李哲 马芸秋 秦梓赫 杨慧科

解剖学报 ›› 2025, Vol. 56 ›› Issue (1) : 11-21.

PDF(3944 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(3944 KB)
解剖学报 ›› 2025, Vol. 56 ›› Issue (1) : 11-21. DOI: 10.16098/j.issn.0529-1356.2025.01.002
肿瘤学专栏

二甲双胍下调上游移码蛋白1表达抑制结直肠癌细胞增殖的机制

  • 杨佳辰 李哲 马芸秋 秦梓赫 杨慧科*
作者信息 +

Metformin inhibiting cell proliferation of colorectal cancer by down-regulating up-frameshift protein 1 expression

  • YANG Jia-chen  LI Zhe  MA Yun-qiu  QIN Zi-he YANG Hui-ke*
Author information +
文章历史 +

摘要

目的  探讨二甲双胍通过下调上游移码蛋白1(UPF1)的表达抑制HCT116结直肠癌细胞增殖的相关机制。方法利用TCGA和UALCAN数据库分析UPF1在结肠癌组织内的表达情况。采用Western blotting和Real-time PCR验证UPF1在结肠癌肿瘤组织和癌旁正常组织间的表达差异。应用集落形成实验、CCK-8实验、划痕实验和Transwell侵袭实验分别检测敲低UPF1对HCT116细胞增殖、迁移和侵袭的影响。从GEO数据库筛选敲低UPF1的HCT116细胞数据集进行京都基因及基因组百科全书(KEGG)通路分析,Real-time PCR验证富集于Hippo通路的差异基因的表达情况。二甲双胍处理HCT116细胞,Western blotting和Real-time PCR检测UPF1的表达变化。利用孟德尔随机化分析服用二甲双胍与结直肠癌之间的因果关联。结果TCGA和UALCAN数据库分析结果显示,UPF1 mRNA和蛋白在结肠癌组织内呈高表达并与临床病理分期和淋巴结转移密切相关。与癌旁正常组织相比,结肠癌组织内UPF1蛋白和mRNA均呈高表达。敲低UPF1表达能够抑制HCT116细胞的增殖、迁移和侵袭能力。KEGG富集分析显示,共8个差异基因影响Hippo通路,Real-time PCR实验验证CTNNB1、BMP4、TEAD2、PARD6G和FZD1 mRNA在敲低UPF1表达的HCT116细胞内呈低表达。二甲双胍作用后,HCT116细胞内UPF1蛋白和mRNA的表达均下降。孟德尔随机化分析显示,服用二甲双胍与结直肠癌之间存在负向因果关联。结论   敲低UPF1表达通过调节Hippo通路抑制HCT116细胞增殖,二甲双胍通过下调UPF1表达发挥抑制结直肠癌细胞增殖的作用。

Abstract

Objective To investigate the related mechanism which metformin inhibited the proliferation of HCT116 colorectal cancer cells via down-regulating the expression of up-frameshift protein 1 (UPF1).     Methods TCGA and UALCAN databases were utilized to analyze the expression level of UPF1, while Western blotting and Real-time PCR were performed to validate the differences of UPF1 expressions in colon cancer tissues and adjacent normal tissues. Clone formation assay, CCK-8 assay, wound healing assay and Transwell invasion assay were used to examine the effects of knockdown UPF1 on the proliferation, migration and invasion of HCT116 cells respectively. The HCT116 cell dataset with UPF1 knockdown was screened from GEO database for Kyoto Encydopedia of Genes and Genomes(KEGG) pathway analysis, the expression level of differential genes that enriched in Hippo pathway were verified by Real-time PCR. The HCT116 cells were treated with metformin, Western blotting and Real-time PCR were employed to detect the UPF1 expression. Mendelian randomization analysis was performed to explore the causal association between metformin treatment and colorectal cancer.     Results Analysis of TCGA and UALCAN databases showed that both UPF1 mRNA and protein were highly expressed in colon cancer tissues and the expression level of UPF1 was closely correlated with clinicopathologic stage and lymph node metastasis. Compared with adjacent normal tissues, the UPF1 protein and mRNA were highly expressed in colon cancer tissues. Knockdown UPF1 expression could inhibit the proliferation, migration and invasive ability of HCT116 cells. There were 8 differential genes affect the Hippo pathway by KEGG enrichment analysis, Real-time PCR experiments confirmed that CTNNB1, BMP4, TEAD2, PARD6G and FZD1 mRNA decreased in HCT116 cells with UPF1 knockdown. Both UPF1 protein and mRNA expressions decreased after metformin treatment in HCT116 cells. Mendelian randomization analysis showed a negative causal association between metformin treatment and colorectal cancer.      Conclusion Knockdown of UPF1 expression inhibits the proliferation of HCT116 cells through regulating Hippo pathway. Metformin can reduce the UPF1 expression for further inhibiting the proliferation of colorectal cancer cells.

关键词

上游移码蛋白 1 / 二甲双胍 / 结直肠癌癌症 / Hippo通路 / 孟德尔随机化分析

Key words

Up-frameshift protein 1 / Metformin / Colorectal cancer / Hippo pathway / Mendelian randomization analysis 


引用本文

导出引用
杨佳辰 李哲 马芸秋 秦梓赫 杨慧科. 二甲双胍下调上游移码蛋白1表达抑制结直肠癌细胞增殖的机制[J]. 解剖学报. 2025, 56(1): 11-21 https://doi.org/10.16098/j.issn.0529-1356.2025.01.002
YANG Jia-chen LI Zhe MA Yun-qiu QIN Zi-he YANG Hui-ke. Metformin inhibiting cell proliferation of colorectal cancer by down-regulating up-frameshift protein 1 expression[J]. Acta Anatomica Sinica. 2025, 56(1): 11-21 https://doi.org/10.16098/j.issn.0529-1356.2025.01.002
中图分类号: R735.3   

参考文献

[1]Ionescu VA, Gheorghe G, Bacalbasa N, et al.  Colorectal cancer: from risk factors to oncogenesis[J]. Medicina (Kaunas), 2023, 59(9): 1646.
[2]La Vecchia S, Sebastian C. Metabolic pathways regulating colorectal cancer initiation and progression[J]. Semin Cell Dev Biol, 2020, 98: 63-70.
[3]Zhao H, Ming T, Tang S, et al. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target[J]. Mol Cancer, 2022, 21(1): 144.
[4]Chen BL, Wang HM, Lin XS, et al. UPF1: a potential biomarker in human cancers[J]. Front Biosci (Landmark Ed), 2021, 26(5): 76-84.
[5]Tan K, Stupack DG, Wilkinson MF. Nonsense-mediated RNA decay: an emerging modulator of malignancy[J]. Nat Rev Cancer, 2022, 22(8): 437-451.
[6]Kamarudin MNA, Sarker MMR, Zhou JR, et al. Metformin in colorectal cancer: molecular mechanism, preclinical and clinical aspects[J]. J Exp Clin Cancer Res, 2019, 38(1): 491.
[7]Elbere I, Silamikelis I, Ustinova M, et al. Significantly altered peripheral blood cell DNA methylation profile as a result of immediate effect of metformin use in healthy individuals[J]. Clin Epigenetics, 2018, 10(1): 156.
[8]Sakaue S, Kanai M, Tanigawa Y, et al. A cross-population atlas of genetic associations for 220 human phenotypes[J]. Nat Genet, 2021, 53(10): 1415-1424.
[9]Xiang LCh, Jiang ZhX, Jiang XY, et al. Differential expression and bioinformatics analysis of epsin3 in colorectal cancer[J]. Acta Anatomia Sinica, 2022, 53(4): 507-514. (in Chinese)
向丽莼, 姜钟翔, 姜小叶, 等. Epsin3 在结直肠癌中的差异表达及生物信息学分析[J]. 解剖学报, 2022, 53(4): 507-514.
[10]Chen B, Wang H, Li D, et al. Up-frameshift protein 1 promotes tumor progression by regulating apoptosis and epithelial-mesenchymal transition of colorectal cancer[J]. Technol Cancer Res Treat, 2021, 20: 15330338211064438.
[11]Han S, Cao D, Sha J, et al. LncRNA ZFPM2-AS1 promotes lung adenocarcinoma progression by interacting with UPF1 to destabilize ZFPM2[J]. Mol Oncol, 2020, 14(5): 1074-1088.
[12]Shao L, He Q, Liu Y, et al. UPF1 regulates the malignant biological behaviors of glioblastoma cells via enhancing the stability of Linc-00313[J]. Cell Death Dis, 2019, 10(9): 629.
[13]Wu C, Li H, Chang W, et al. Identification and validation of UPF1 as a novel prognostic biomarker in renal clear cell carcinoma[J]. Genes (Basel), 2022, 13(11): 2166.
[14]Bokhari A, Jonchere V, Lagrange A, et al. Targeting nonsense-mediated mRNA decay in colorectal cancers with microsatellite instability[J]. Oncogenesis, 2018, 7(9): 70.
[15]Ma S, Meng Z, Chen R, et al. The Hippo pathway: biology and pathophysiology[J]. Annu Rev Biochem, 2019, 88: 577-604.
[16]Fu M, Hu Y, Lan T, et al. The Hippo signalling pathway and its implications in human health and diseases[J]. Signal Transduct Target Ther, 2022, 7(1): 376.
[17]Li FL, Guan KL. The two sides of Hippo pathway in cancer[J]. Semin Cancer Biol, 2022, 85: 33-42.
[18]Lee S, Hwang Y, Kim TH, et al. UPF1 inhibits hepatocellular carcinoma growth through DUSP1/p53 signal pathway[J]. Biomedicines, 2022, 10(4): 793.
[19]Lv ZQ, Guo YJ. Metformin and its benefits for various diseases[J]. Front Endocrinol (Lausanne), 2020, 11: 191.
[20]Luo S, Wong ICK, Chui CSL, et al. Effects of putative metformin targets on phenotypic age and leukocyte telomere length: a Mendelian randomisation study using data from the UK Biobank[J]. Lancet Healthy Longev, 2023, 4(7): e337-e344.
[21]Zakikhani M, Dowling RJ, Sonenberg N, et al. The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase[J]. Cancer Prev Res, 2008, 1(5): 369-375.
[22]Li L, Geng Y, Feng R, et al. The human RNA surveillance factor UPF1 modulates gastric cancer progression by targeting long non-coding RNA MALAT1[J]. Cell Physiol Biochem, 2017, 42(6): 2194-2206.

基金

黑龙江省中医药管理局课题;黑龙江省省属科研院所科研业务费

PDF(3944 KB)

Accesses

Citation

Detail

段落导航
相关文章

/