金属离子在难治性癫痫发病机制中的研究进展

李昊 张莹 刘媛媛

解剖学报 ›› 2024, Vol. 55 ›› Issue (5) : 641-646.

PDF(1085 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(1085 KB)
解剖学报 ›› 2024, Vol. 55 ›› Issue (5) : 641-646. DOI: 10.16098/j.issn.0529-1356.2024.05.017
综述

金属离子在难治性癫痫发病机制中的研究进展

  • 李昊1,2  张莹3  刘媛媛1,2*
作者信息 +

Current progress of metal ions in the pathogenesis of refractory epilepsy 

  • LI  Hao1,2  ZHANG  Ying3  LIU  Yuan-yuan1,2*
Author information +
文章历史 +

摘要

癫痫是一种常见的由大脑异常电活动引起的慢性神经系统疾病,其发病机制尚未完全阐明。近年来有越来越多研究证明,大脑中的铁、锌、铜参与癫痫的发生发展过程,可能通过影响相应的离子通道的功能、膜电位的平衡、动作电位的传导、氧化还原等方面,进而影响神经元的兴奋性和信号传导。本文中我们就此进行综述,旨在增进我们对癫痫发病机制的理解,为寻找基于金属离子防治癫痫策略提供新思路。 

Abstract

Epilepsy is a common chronic neurological disorder caused by abnormal electrical activity in the brain, and its pathogenesis has not been fully clarified. In recent years, more and more studies have shown that iron, zinc and copper in the brain are involved in the occurrence and development of epilepsy. These metal ions possibly play a role in epileptogenesis by affecting neuronal excitability and signal transduction through alterating ion channel function, potential balance, action potential propagation, redox and so on. In this review, we mainly analyse the effects of these metal ions on epilepsy, in order to explore the underlying mechanisms of epilepsy and provide promising therapeutic strategies for epilepsy based on metal ions. 

关键词

癫痫|金属离子|神经系统|离子通道|螯合治疗 

引用本文

导出引用
李昊 张莹 刘媛媛. 金属离子在难治性癫痫发病机制中的研究进展[J]. 解剖学报. 2024, 55(5): 641-646 https://doi.org/10.16098/j.issn.0529-1356.2024.05.017
LI Hao ZHANG Ying LIU Yuan-yuan. Current progress of metal ions in the pathogenesis of refractory epilepsy [J]. Acta Anatomica Sinica. 2024, 55(5): 641-646 https://doi.org/10.16098/j.issn.0529-1356.2024.05.017
中图分类号: R741   

参考文献

   [1]  Tan GH, Liu YY, Hu XL, et al. Neuregulin 1 represses limbic epileptogenesis through ErbB4 in parvalbumin-expressing interneurons [J]. Nat Neurosci, 2011, 15(2):258-266.
  [2]  Thijs RD, Surges R, O’Brien TJ, et al. Epilepsy in adults [J]. Lancet, 2019, 393(10172):689-701.
  [3]  Miziak B, Konarzewska A, U?amek-Kozio? M, et al. Anti-epileptogenic effects of antiepileptic drugs [J]. Int J Mol Sci, 2020, 21(7):2340.
  [4]  Mathie A, Sutton GL, Clarke CE, et al. Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability [J]. Pharmacol Ther, 2006, 111(3):567-583.
  [5]  Li L, Guo L, Gao R, et al. Ferroptosis: a new regulatory mechanism in neuropathic pain [J]. Front Aging Neurosci, 2023, 15:1206851.
  [6]  Luo D, Liu Y, Li J, et al. Systematic Analysis of the Relationship Between Elevated Zinc and Epilepsy [J]. J Mol Neurosci, 2024, 74(2):39.
  [7]  Ozturk-Sonmez L, Tutkun E, Agar E, et al. The effect of vitamin E supplementation on brain tissue element levels in epileptic rats [J]. Arch Ital Biol, 2022, 160(1-2):42-53.
  [8]  Zimmer TS, David B, Broekaart DWM, et al. Seizure-mediated iron accumulation and dysregulated iron metabolism after status epilepticus and in temporal lobe epilepsy [J]. Acta Neuropathol, 2021, 142(4):729-759.
  [9]  Sande R, Doshi G, Godad A. Deciphering the role of metal and non-metals in the treatment of epilepsy [J]. Neurochem Int, 2023, 167:105536.
  [10]  Chen S, Chen Y, Zhang Y, et al. Iron Metabolism and Ferroptosis in Epilepsy [J]. Front Neurosci, 2020, 14:601193.
  [11]  Cheah JH, Kim SF, Hester LD, et al. NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1 [J]. Neuron, 2006, 51(4):431-440.
  [12]  Guan P, Wang N, Duan XL, et al. Effects of intranigeral injection of glutamate and gaba on the expression of divalent metal transporter 1 and hephaestin in the caudate putamen nucleus of rats [J]. Acta Anatomica Sinica, 2008, 39(6):795-799. (in Chinese) 
关鹏, 王娜, 段相林, 等. 谷氨酸钠、γ-氨基丁酸注入黑质对大鼠尾壳核二价金属离子转运体1和膜铁转运辅助蛋白表达的影响 [J]. 解剖学报, 2008, 39(6):795-799.
  [13]  Su Y, Cao N, Zhang D, et al. The effect of ferroptosis-related mitochondrial dysfunction in the development of temporal lobe epilepsy [J]. Ageing Res Rev, 2024, 96:102248.
  [14]  Chen J, Li M, Liu Z, et al. Molecular mechanisms of neuronal death in brain injury after subarachnoid hemorrhage [J]. Front Cell Neurosci, 2022, 16:1025708.
  [15]  Ye L, Zeng Q, Ling M, et al. Inhibition of IP3R/Ca2+ dysregulation protects mice from ventilator-induced lung injury via endoplasmic reticulum and mitochondrial pathways [J]. Front Immunol, 2021, 12:729094.
  [16]  Lü Z, Han J, Li J, et al. Single cell RNA-seq analysis identifies ferroptotic chondrocyte cluster and reveals TRPV1 as an anti-ferroptotic target in osteoarthritis [J]. EBioMedicine, 2022, 84:104258.
  [17]  Yang N, Zhang K, Guan QW, et al. D-Penicillamine reveals the amelioration of seizure-induced neuronal injury via inhibiting aqp11-dependent ferroptosis [J]. Antioxidants (Basel), 2022, 11(8):1602.
  [18]  Jia JN, Yin XX, Li Q, et al. Neuroprotective effects of the anti-cancer drug lapatinib against epileptic seizures via suppressing glutathione peroxidase 4-dependent ferroptosis [J]. Front Pharmacol, 2020, 11:601572.
  [19]  Li Y, Liu P, Lin Q, et al. Postoperative seizure and memory outcome of temporal lobe epilepsy with hippocampal sclerosis: A systematic review [J]. Epilepsia, 2023, 64(11):2845-2860.
  [20]  Frederickson CJ, Bush AI. Synaptically released zinc: physiological functions and pathological effects [J]. Biometals, 2001, 14(3-4):353-366.
  [21]  Crichton RR, Dexter DT, Ward RJ. Metal based neurodegenerative diseases—From molecular mechanisms to therapeutic strategies [J]. Coord Chem Rev, 2008,252(10/11):1189-1199.
  [22]  Saghazadeh A, Mahmoudi M, Meysamie A, et al. Possible role of trace elements in epilepsy and febrile seizures: a meta-analysis [J]. Nutr Rev, 2015, 73(11):760-779.
  [23]  Choi S, Hong DK, Choi BY, et al. Zinc in the brain: friend or foe [J]? Int J Mol Sci, 2020, 21(23):8941.
  [24]  Imbrici P, D’Adamo MC, Cusimano A, et al. Episodic ataxia type 1 mutation F184C alters Zn2+ -induced modulation of the human K+ channel Kv1.4-Kv1.1/Kvbeta1.1 [J]. Am J Physiol Cell Physiol, 2007, 292(2):C77-C787.
  [25]  van Loo KMJ, Schaub C, Pitsch J, et al. Zinc regulates a key transcriptional pathway for epileptogenesis via metal-regulatory transcription factor 1 [J]. Nat Commun, 2015, 6:8688.
  [26]  Khalil A, Kovac S, Morris G, et al. Carvacrol after status epilepticus (SE) prevents recurrent SE, early seizures, cell death, and cognitive decline [J]. Epilepsia, 2017, 58(2):263-273.
  [27]  Khalil A, Shekh-Ahmad T, Kovac S, et al. Drugs acting at TRPM7 channels inhibit seizure-like activity [J]. Epilepsia Open, 2023, 8(3):1169-1174.
  [28]  Hong DK, Kho AR, Lee SH, et al. Pathophysiological roles of transient receptor potential (Trp) channels and zinc toxicity in brain disease [J]. Int J Mol Sci, 2023, 24(7):6665.
  [29]  Kim YJ, Kang TC. The role of TRPC6 in seizure susceptibility and seizure-related neuronal damage in the rat dentate gyrus [J]. Neuroscience, 2015, 307:215-230.
  [30]  Lee CJ, Lee SH, Kang BS, et al. Effects of L-type voltage-gated calcium channel (LTCC) inhibition on hippocampal neuronal death after pilocarpine-induced seizure [J]. Antioxidants (Basel), 2024, 13(4):389.
  [31]  Choi BY, Jang BG, Kim JH, et al. Copper/zinc chelation by clioquinol reduces spinal cord white matter damage and behavioral deficits in a murine MOG-induced multiple sclerosis model [J]. Neurobiol Dis, 2013, 54:382-391.
  [32]  Kho AR, Choi BY, Kim JH, et al. Prevention of hypoglycemia-induced hippocampal neuronal death by N-acetyl-L-cysteine (NAC) [J]. Amino Acids, 2017, 49(2):367-378.
  [33]  Zhu S, Wu H, Cui H, et al. Induction of mitophagy via ROS-dependent pathway protects copper-induced hypothalamic nerve cell injury [J]. Food Chem Toxicol, 2023, 181:114097.
  [34]  Gündo?du A, Bolattürk ?F, Aygül R, et al. The relationship of fatigue and depression with trace element levels in epileptic patients [J]. Biol Trace Elem Res, 2023, 201(3):1135-1142.
  [35]  Talat MA, Ahmed A, Mohammed L. Serum levels of zinc and copper in epileptic children during long-term therapy with anticonvulsants [J]. Neurosciences (Riyadh), 2015, 20(4):341-345.
  [36]  Liao W, Zhu Z, Feng C, et al. Toxicity mechanisms and bioavailability of copper to fish based on an adverse outcome pathway analysis [J]. J Environ Sci (China), 2023, 127:495-507.
  [37]  Morera FJ, Wolff D, Vergara C. External copper inhibits the activity of the large-conductance calcium- and voltage-sensitive potassium channel from skeletal muscle [J]. J Membr Biol, 2003, 192(1):65-72.
  [38]  Peters C, Mu?oz B, Sepúlveda FJ, et al. Biphasic effects of copper on neurotransmission in rat hippocampal neurons [J]. J Neurochem, 2011, 119(1):78-88.
  [39]  Wen F, Tan Z-G, Xiang J. Cu-Zn SOD suppresses epilepsy in pilocarpine-treated rats and alters SCN2A/Nrf2/HO-1 expression [J]. Epileptic Disord, 2022, 24(4):647-656.
  [40]  Susankova K, Tousova K, Vyklicky L, et al. Reducing and oxidizing agents sensitize heat-activated vanilloid receptor (TRPV1) current [J]. Mol Pharmacol, 2006, 70(1):383-394.
  [41]  White AR, Du T, Laughton KM, et al. Degradation of the Alzheimer disease amyloid beta-peptide by metal-dependent up-regulation of metalloprotease activity [J]. J Biol Chem, 2006, 281(26):17670-17680.
  [42]  Huang Z, Luo Y, Zhang T, et al. A Stimuli-Responsive Small-Molecule Metal-Carrying Prochelator: A Novel Prodrug Design Strategy for Metal Complexes [J]. Angew Chem Int Ed Engl, 2022, 61(28):e202203500.
  [43]  Palm R, Hallmans G. Zinc and copper metabolism in phenytoin therapy [J]. Epilepsia, 1982, 23(5):453-461.
  [44]  Verrotti A, Basciani F, Trotta D, et al. Serum copper, zinc, selenium, glutathione peroxidase and superoxide dismutase levels in epileptic children before and after 1 year of sodium valproate and carbamazepine therapy [J]. Epilepsy Res, 2002, 48(1-2):71-75.
  [45]  Ahn JE, Bathena SPR, Brundage RC, et al. Iron supplements in nursing home patients associated with reduced carbamazepine absorption [J]. Epilepsy Res, 2018, 147:115-118.
  [46]  Kürek?i AE, Alpay F, Tanindi S, et al. Plasma trace element, plasma glutathione peroxidase, and superoxide dismutase levels in epileptic children receiving antiepileptic drug therapy [J]. Epilepsia, 1995, 36(6):600-604.
  [47]  Grünspan LD, Mussulini BHM, Baggio S, et al. Teratogenic and anticonvulsant effects of zinc and copper valproate complexes in zebrafish [J]. Epilepsy Res, 2018, 139:171-179.

PDF(1085 KB)

Accesses

Citation

Detail

段落导航
相关文章

/