脑结构协变网络鲁棒性在不同昼夜节律偏好人群中的差异

黄辰烨 李祥君 谢道俊

解剖学报 ›› 2024, Vol. 55 ›› Issue (4) : 508-514.

PDF(5538 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(5538 KB)
解剖学报 ›› 2024, Vol. 55 ›› Issue (4) : 508-514. DOI: 10.16098/j.issn.0529-1356.2024.04.018
脑科学技术方法

脑结构协变网络鲁棒性在不同昼夜节律偏好人群中的差异

  • 黄辰烨李祥君谢道俊1,2*
作者信息 +

Differences in robustness of brain structure covariance networks among individuals with different circadian rhythm preferences

  • HUANG Chen-ye1, LI Xiang-jun1, XIE Dao-jun1,2*
Author information +
文章历史 +

摘要

目的  基于灰质体积和皮层厚度,构建结构协变网络,探讨不同昼夜节律偏好人群脑结构协变网络鲁棒性的差异。 方法  使用CAT12工具箱提取早时型和晚时型志愿者脑灰质形态学指标,依据LPBA40图谱和Desikan-Killiany图谱,分别构建基于灰质体积、皮层厚度的结构协变网络,并使用GAT工具箱解算图论参数及结构协变网络对抗蓄意攻击的承受能力,观察网络的鲁棒性。 结果  在以灰质体积构建的结构协变网络中,当使用介数中心性作为蓄意攻击的目标,网络相对大小作为网络鲁棒性的评价指标时,早时型志愿者结构协变网络鲁棒性强于晚时型志愿者(P<0.05);当使用节点度作为蓄意攻击的目标,网络相对大小作为网络鲁棒性的评价指标时,早时型志愿者结构协变网络鲁棒性与晚时型志愿者相比差异无统计学意义(P>0.05)。在以皮层厚度构建的结构协变网络中,当使用介数中心性或节点度作为蓄意攻击的目标,网络相对大小作为网络鲁棒性的评价指标时,早时型志愿者结构协变网络鲁棒性均弱于晚时型志愿者(P<0.05)。 结论  不同昼夜节律偏好人群脑灰质形态间协变关系存在差异,结构协变网络鲁棒性可能是其表现之一,这为昼夜节律相关的神经解剖学特征提供了新的理解。

Abstract

Objective  To explore the differences in the robustness of structural covariance networks among populations with different circadian rhythm preferences, and to constructing brain structural covariance networks based on gray matter volume and cortical thickness. Methods  Morphological metrics of gray matter from early chronotype and late chronotype volunteers was extracted by using the CAT12 toolbox. Structural covariance networks based on gray matter volume and cortical thickness were constructed according to the LPBA40 atlas and Desikan-Killiany atlas. Graph theoretical parameters were calculated and the resilience of structural covariance networks against deliberate attacks were assessed by utilizing the GAT toolbox to observe the network’s robustness. Results  In the structural covariance network constructed based on gray matter volume, when using betweenness centrality as the target of deliberate attacks and network size as the measure of network robustness, the structural covariance network of early chronotype volunteers exhibits greater robustness than that of late chronotype volunteers (P<0.05).When using node degree as the target of deliberate attacks and network size as the evaluation metric for network robustness, the structural covariance network robustness of early chronotype volunteers showed no statistically significant difference compared with the late chronotype volunteers (P>0.05).In the structural covariance network constructed based on cortical thickness, when using betweenness centrality or node degree as the targets of deliberate attacks, and network size as the evaluation metric for network robustness, the structural covariance network robustness of early chronotype volunteers was weaker than that of late chronotype volunteers (P<0.05). Conclusion  The covariance relationships among brain gray matter morphology vary among populations with different circadian rhythm preferences, and the differences in structural covariance network robustness may be one of the manifestations, which provides a new understanding of the neuroanatomical features related to circadian rhythm.

关键词

 昼夜节律 / 结构协变网络 / 网络鲁棒性 / 磁共振成像 /

Key words

Circadian rhythm / Structural covariance network / Network robustness / Magnetic resonance imaging / Human

引用本文

导出引用
黄辰烨 李祥君 谢道俊. 脑结构协变网络鲁棒性在不同昼夜节律偏好人群中的差异[J]. 解剖学报. 2024, 55(4): 508-514 https://doi.org/10.16098/j.issn.0529-1356.2024.04.018
HUANG Chen-ye, LI Xiang-jun, XIE Dao-jun. Differences in robustness of brain structure covariance networks among individuals with different circadian rhythm preferences[J]. Acta Anatomica Sinica. 2024, 55(4): 508-514 https://doi.org/10.16098/j.issn.0529-1356.2024.04.018
中图分类号: R322.81   

参考文献

[1]Montaruli A, Castelli L, Mulè A, et al. Biological rhythm and chronotype: new perspectives in health[J]. Biomolecules, 2021,11(4):487.
[2]Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms[J]. Int J Chronobiol, 1976,4(2):97.
[3]Xu S, Akioma M, Yuan Z. Relationship between circadian rhythm and brain cognitive functions[J]. Front Optoelectron, 2021,14(3):278-287.
[4]Evans SL, Leocadio-Miguel MA, Taporoski TP, et al. Evening preference correlates with regional brain volumes in the anterior occipital lobe[J]. Chronobiol Int, 2021,38(8):1135-1142.
[5]Takeuchi H, Taki Y, Sekiguchi A, et al. Regional gray matter density is associated with morningness-eveningness: evidence from voxel-based morphometry[J]. Neuroimage, 2015,117:294-304.
[6]Zareba MR, Fafrowicz M, Marek T, et al. Late chronotype is linked to greater cortical thickness in the left fusiform and entorhinal gyri[J]. Biol Rhythm Res, 2022,53(10):1626-1638.
[7]Wang E, Jia Y, Ya Y, et al. Abnormal topological organization of sulcal depth-based structural covariance networks in Parkinson’s disease[J]. Front Aging Neurosci, 2021,12:575672. 
[8]Palaniyappan L, Hodgson O, Balain V, et al. Structural covariance and cortical reorganisation in schizophrenia: a MRI-based morphometric study[J]. Psychol Med, 2019,49(3):412-420.
[9]Yang S, Wu Y, Sun L, et al. Abnormal topological organization of structural covariance networks in patients with temporal lobe epilepsy comorbid sleep disorder[J]. Brain Sci, 2023,13(10):1493.
[10]Samantaray T, Gupta U, Saini J, et al. Unique brain network identification number for Parkinson’s and healthy individuals using structural MRI[J]. Brain Sci, 2023,13(9):1297.
[11]Yang Y, Cheng Y, Wang X, et al. Gout is not just arthritis: abnormal cortical thickness and structural covariance networks in gout[J]. Front Neurol, 2021,12:662497. 
[12]Oginska H, Mojsa-Kaja J, Mairesse O. Chronotype description: in search of a solid subjective amplitude scale[J]. Chronobiol Int, 2017,34(10):1388-1400.
[13]Ogińska H. Can you feel the rhythm? A short questionnaire to describe two dimensions of chronotype[J]. Personality and Individual Differences, 2011,50(7):1039-1043.
[14]Shattuck DW, Mirza M, Adisetiyo V, et al. Construction of a 3D probabilistic atlas of human cortical structures[J]. Neuroimage, 2008,39(3):1064-1080.
[15]Desikan RS, Segonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest[J]. Neuroimage, 2006,31(3):968-980.
[16]Barnes J, Ridgway GR, Bartlett J, et al. Head size, age and gender adjustment in MRI studies: a necessary nuisance [J] ? Neuroimage, 2010,53(4):1244-1255.
[17]He Y, Chen Z, Evans A. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease[J]. J Neurosci, 2008,28(18):4756-4766.
[18]Whitlow CT, Casanova R, Maldjian JA. Effect of resting-state functional MR imaging duration on stability of graph theory metrics of brain network connectivity[J]. Radiology, 2011,259(2):516-524.
[19]Bernhardt BC, Chen Z, He Y, et al. Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy[J]. Cereb Cortex, 2011,21(9):2147-2157.
[20]Norbury R. Diurnal preference and grey matter volume in a large population of older adults: data from the UK biobank[J]. J Circadian Rhythms, 2020,18(1):3.
[21]Takeuchi H, Taki Y, Sekiguchi A, et al. Regional gray matter density is associated with morningness-eveningness: Evidence from voxel-based morphometry[J]. Neuroimage, 2015,117:294-304. 
[22]Lapidaire W, Urrila AS, Artiges E, et al. Irregular sleep habits, regional grey matter volumes, and psychological functioning in adolescents[J]. PLoS One, 2021,16(2):e243720.
[23]Liao X, Vasilakos AV, He Y. Small-world human brain networks: perspectives and challenges[J]. Neurosci Biobehav Rev, 2017,77:286-300. 
[24]He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI[J]. Cerebral cortex, 2007,17(10):2407-2419.
[25]Wang JS, Li ZY, Xu YQ. Complex network node attacking based on multi-attribute decision making[J]. Electronics Optics and Control, 2016,23(4):42-47. (in Chinese) 
王劲松, 李宗育, 徐晏琦. 基于多属性决策的复杂网络节点攻击研究[J]. 电光与控制, 2016,23(4):42-47.
[26]Albert R, Jeong H, Barabási A. Error and attack tolerance of complex networks[J]. Nature, 2000,406(6794):378-382.
[27]Wandelt S, Sun X, Feng D, et al. A comparative analysis of approaches to network-dismantling[J]. Sci Rep, 2018,8(1):13513.
[28]Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’networks[J]. Nature, 1998,393(6684):440-442.
[29]Newman ME, Strogatz SH, Watts DJ. Random graphs with arbitrary degree distributions and their applications[J]. Phys Rev E Stat Nonlin Soft Matter Phys,2001,64(2Pt2):026118.
[30]Zhao LM, Hu R, Xie FF, et al. Radiomic-based MRI for classification of solitary brain metastases subtypes from primary lymphoma of the central nervous system[J]. J Magn Reson Imaging, 2023,57(1):227-235.

基金

化痰祛瘀方调控PI3K-AKT-mTOR信号通路诱导神经元自噬改善WD认知障碍的机制研究

PDF(5538 KB)

Accesses

Citation

Detail

段落导航
相关文章

/