正常和帕金森病患者基底神经节的转录差异分析

爼高钰 李凤娇 咸伟伟 过旸洋 赵百成 李文生 尤琳雅

解剖学报 ›› 2024, Vol. 55 ›› Issue (4) : 482-492.

PDF(4993 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(4993 KB)
解剖学报 ›› 2024, Vol. 55 ›› Issue (4) : 482-492. DOI: 10.16098/j.issn.0529-1356.2024.04.015
脑科学技术方法

正常和帕金森病患者基底神经节的转录差异分析

  • 爼高钰李凤娇1 咸伟伟1 过旸洋1 赵百成1 李文生1 尤琳雅1,2*
作者信息 +

Differential expression analysis of the transcriptome for human basal ganglia from normal donors and Parkinson’s disease patients

  • ZU Gao-yuLI Feng-jiaoXIAN Wei-weiGUO Yang-yang ZHAO Bai-cheng LI Wen-sheng YOU Lin-ya1,2*
Author information +
文章历史 +

摘要

目的  分析人基底神经节各核团的分子标志物以及不同核团间、不同性别、疾病相关的差异表达,探讨差异表达基因的生物学功能。 方法 针对来源于10具人尸脑45个基底神经节核团样本,按是否有神经疾病分为对照组和帕金森病组,对照组按性别分为女性和男性组,提取各样本RNA进行高通量转录组测序。生物信息学分析鉴定对照组各核团的分子标志物、不同核团间、不同性别以及帕金森病相关的差异表达基因,并对差异表达基因进行基因富集分析和功能注释。 结果 测序分析发现,top差异表达基因包含尾状核的DRD1、FOXG1、FAM183A;黑质的SLC6A3、EN1、SLC18A2、TH;苍白球的MEPE、FGF10;底丘脑的SLC17A6、PMCH、SHOX2等。其中,壳核top差异表达基因与尾状核存在部分重叠,如DRD1、FOXG1等。对照组不同核团间鉴定出大量差异表达基因,尾状核与苍白球间存在数量最多的差异表达基因(9321),其次是壳核与苍白球间(6341),尾状核与黑质间(6054)。黑质与底丘脑间存在数量最少的差异表达基因(44)。基因富集分析发现,尾状核与苍白球间下调基因显著富集在神经元髓鞘形成、细胞迁移调节等;壳核与苍白球上调基因富集在化学突触传递、膜电位调节、金属离子转运、神经递质转运等,而下调基因富集在神经元髓鞘形成、细胞黏附等;尾状核与黑质上调基因富集在化学突触传递、轴突传导等,而下调基因富集在神经元髓鞘形成等。另外,尾状核、壳核、黑质、苍白球和底丘脑分别鉴定到性别差异上调基因468、548、1402、333和341个,以及下调基因756、988、2532、444和1372个。基因富集分析发现,上调基因大多富集在免疫反应相关通路,下调基因富集在化学突触传递等。最后,尾状核、壳核、黑质、苍白球和底丘脑分别鉴定出帕金森病特异上调基因709、852、276、507和416个,以及下调基因830、2014、1218、836和1730个。基因富集分析发现,上调基因大多富集在凋亡信号调节,下调基因大多富集在化学突触传递、动作电位调节等。 结论 我们发现并分析了人基底神经节不同核团的分子标志物、核团间差异、性别差异和帕金森病的相关差异。

Abstract

Objective To analyze the molecular markers of various nuclei in the human basal ganglia and the differentially expressed genes (DEGs) among different nuclei, gender, and Parkinson’s disease (PD), followed by the biological function annotations of the DEGs. Methods Forty-five specimens of basal ganglia from 10 human postmortem brains were divided into control and PD groups, and the control group was further categorized into female and male groups. RNA from each sample was extracted for high-throughput transcriptome sequencing. Bioinformatic analysis was conducted to identify molecular markers of each nuclei in the control group, nuclei-specific, gender-specific, and PD-specific DEGs, followed by gene enrichment analysis and functional annotation. Results Sequencing analysis revealed top DEGs such as DRD1, FOXG1, and FAM183A in the caudate; SLC6A3, EN1, SLC18A2, and TH in the substantia nigra; MEPE and FGF10 in the globus pallidus; and SLC17A6, PMCH, and SHOX2 in the subthalamic nucleus. In them, putamen showed some overlapping DEGs with caudate, such as DRD1 and FOXG1. A significant number of DEGs were identified among different nuclei in the control group, with the highest number between caudate and globus pallidus (9321), followed by putamen and globus pallidus (6341), caudate and substantia nigra (6054), and substantia nigra and subthalamic nucleus (44). Gene enrichment analysis showed that downregulated DEGs between caudate and globus pallidus were significantly enriched in processes like myelination of neurons and cell migration. Upregulated DEGs between putamen and globus pallidus were enriched processes like chemical synaptic transmission and regulation of membrane potential, while downregulated DEGs were enriched in myelination and cell adhesion. Upregulated DEGs between caudate and substantia nigra were enriched in processes like chemical synaptic transmission and axonal conduction, while downregulated DEGs were enriched in myelination of neurons. Totally 468, 548, 1402, 333, and 341 gender-specific upregulated DEGs and 756, 988, 2532, 444, and 1372 downregulated DEGs were identified in caudate, putamen, substantia nigra, globus pallidus, and subthalamus nucleus. Gene enrichment analysis revealed upregulated DEGs mostly enriched in pathways related to immune response and downregulated DEGs in chemical synaptic transmission. At last, 709, 852, 276, 507, and 416 PD-specific upregulated DEGs and 830, 2014, 1218, 836, and 1730 downregulated DEGs were identified in caudate, putamen, substantia nigra, globus pallidus, and subthalamus nucleus. Gene enrichment analysis revealed upregulated DEGs mostly enriched in apoptotic regulation and downregulated DEGs in chemical synaptic transmission and action potential regulation. Conclusion We identified and analysed the molecular markers of different human basal ganglia nuclei, as well as DEGs among different nuclei, different gender, and between control and PD.

关键词

基底神经节 / 帕金森病 / 高通量转录组测序 / 差异表达分析 /

Key words

 Basal ganglia / Parkinson’s disease / High-throughput transcriptome sequencing / Differential expression analysis / Human

引用本文

导出引用
爼高钰 李凤娇 咸伟伟 过旸洋 赵百成 李文生 尤琳雅. 正常和帕金森病患者基底神经节的转录差异分析[J]. 解剖学报. 2024, 55(4): 482-492 https://doi.org/10.16098/j.issn.0529-1356.2024.04.015
ZU Gao-yu LI Feng-jiao XIAN Wei-wei GUO Yang-yang ZHAO Bai-cheng LI Wen-sheng YOU Lin-ya. Differential expression analysis of the transcriptome for human basal ganglia from normal donors and Parkinson’s disease patients[J]. Acta Anatomica Sinica. 2024, 55(4): 482-492 https://doi.org/10.16098/j.issn.0529-1356.2024.04.015
中图分类号: R322    

参考文献

[1]Fazl A, Fleisher J. Anatomy, physiology, and clinical syndromes of the basal ganglia: a brief review [J]. Semin Pediatr Neurol, 2018, 25: 2-9. 
[2]Chuhma N, Tanaka KF, Nagai T. The physiology and pathophysiology of basal ganglia: from signal transduction to circuits [J]. Neurochem Int, 2019, 131: 104544. 
[3]Zhai S, Cui Q, Simmons DV, et al. Distributed dopaminergic signaling in the basal ganglia and its relationship to motor disability in Parkinson’s disease [J]. Curr Opin Neurobiol, 2023, 83: 102798.  
[4]Wang ZhG, Liu W. Analysis of the difference in gene expression and mutation of glioblastoma in different age groups by using the transcriptional and exome sequencing[J]. Acta Anatomica Sinica, 2019, 50(1): 8-12.(in Chinese) 
王志刚,刘伟.应用转录组和外显子组测序分析不同年龄组的胶质母细胞瘤中基因表达与突变的差异[J].解剖学报, 2019, 50(1): 8-12. 
[5]Zhang Z, Wei S, Du H, et al. Zfhx3 is required for the differentiation of late born D1-type medium spiny neurons [J]. Experimental Neurology, 2019, 322: 113055. 
[6]Rebeillard F, Ddgois S, Pietrancosta N, et al. The Orphan GPCR Receptor, GPR88, Interacts with Nuclear Protein Partners in the Cerebral Cortex [J]. Cerebral Cortex, 2022, 32(3): 479-489. 
[7]Reid KM, Steel D, Nair S, et al. Loss-of-function variants in DRD1 in infantile parkinsonism-dystonia [J]. Cells, 2023, 12(7):1046. 
[8]Cheng ZY, Hu Y H, Xia QP, et al. DRD1 agonist A-68930 improves mitochondrial dysfunction and cognitive deficits in a streptozotocin-induced mouse model [J]. Brain Res Bull, 2021, 175: 136-149. 
[9]Mcsherry M, Masih KE, Elcioglu NH, et al. Identification of candidate gene FAM183A and novel pathogenic variants in known genes: High genetic heterogeneity for autosomal recessive intellectual disability [J]. PLoS One, 2018, 13(11): e0208324. 
[10]Reith MEA, Kortagere S, Wiers CE, et al. The dopamine transporter gene SLC6A3: multidisease risks [J]. Molecular Psychiatry, 2022, 27(2): 1031-1046. 
[11]Mesman S, Smidt MP. Acquisition of the Midbrain Dopaminergic Neuronal Identity [J]. Int J Mol Sci, 2020, 21(13):4638. 
[12]Yu D, Febbo IG, Maroteaux MJ, et al. The Transcription factor Shox2 shapes neuron firing properties and suppresses seizures by regulation of key ion channels in thalamocortical neurons [J]. Cerebral Cortex, 2021, 31(7): 3194-3212. 
[13]liu H, Wang C, Yu M, et al. TPH2 in the dorsal raphe nuclei regulates energy balance in a sex-dependent manner [J]. Endocrinology, 2021, 162(1): bqaa183. 
[14]Liu ZL, Wang XQ, Liu MF, et al. Meta-analysis of association between TPH2 single nucleotide poiymorphism and depression [J]. Neurosci Biobehav Rev, 2022, 134: 104517. 
[15]Choi JY, Cho H, Ahn SJ, et al. Off-target (18)F-AV-1451 binding in the basal ganglia correlates with age-related iron accumulation [J]. J Nucl Med, 2018, 59(1): 117-120. 
[16]Lotze M, Domin M, Gerlach FH, et al. Novel findings from 2,838 Adult Brains on Sex Differences in Gray Matter Brain Volume [J]. Scientific Reports, 2019, 9(1): 1671. 
[17]Kaasinen V, Joutsa J, Noponen T, et al. Effects of aging and gender on striatal and extrastriatal [123I]FP-CIT binding in Parkinson’s disease [J]. Neurobiol Aging, 2015, 36(4): 1757-1763. 
[18]Malén T, Karjalainen T, Isojärvi J, et al. Atlas of type 2 dopamine receptors in the human brain: Age and sex dependent variability in a large PET cohort [J]. Neuroimage, 2022, 255: 119149. 
[19]Bourque M, Dluzen DE, DI PAOLO T. Neuroprotective actions of sex steroids in Parkinson’s disease [J]. Frontiers in Neuroendocrinol, 2009, 30(2): 142-157.  
[20]Mariani E, Lombardini L, Facchin F, et al. Sex-specific transcriptome differences in substantia nigra tissue:a meta-analysis of parkinson’s disease data [J]. Genes, 2018, 9(6): 275. 
[21]Jamwal S, Blackburn JK, Elsworth JD. Age-associated sex difference in the expression of mitochondria-based redox sensitive proteins and effect of pioglitazone in nonhuman primate brain [J]. Biol Sex Differ, 2023, 14(1): 65. 
[22]Li D, Liang J, Guo W, et al. Integrative analysis of DNA methylation and gene expression data for the diagnosis and underlying mechanism of Parkinson’s disease [J]. Front Aging Neurosci, 2022, 14: 971528. 
[23]Zhang Y, Liu C. Transcriptomic analysis of mRNAs in human whole blood identified age-specific changes in healthy individuals [J]. Medicine (Baltimore), 2023, 102(49): e36486. 
[24]Zhong B, Huang X, Zheng Y, et al. The discovery and development of transthyretin amyloidogenesis inhibitors: what are the lessons [J]? Future Med Chem, 2021, 13(23): 2083-2105. 
[25]Marsili L, Duque KR, Bode RL, et al. Uncovering essential tremor genetics: the promise of longread sequencing [J]. Front Neurol, 2022, 13: 821189. 
[26]Wei ZB, Yuan YF, Jaouen F, et al. SLC35D3 increases autophagic activity in midbrain dopaminergic neurons by enhancing BECN1-ATG14-PIK3C3 complex formation [J]. Autophagy, 2016, 12(7): 1168-1179. 
[27]Balestrino R, Schapira AHV. Parkinson disease [J]. Eur J Neurol, 2020, 27(1): 27-42. 
[28]Lundblad M, Decressac M, Mattsson B, et al. Impaired neurotransmission caused by overexpression of α-synuclein in nigral dopamine neurons [J]. Proc Natl Acad Sci USA, 2012, 109(9): 3213-3219. 
[29]Lauritsen J, Romero-Ramos M. The systemic immune response in Parkinson’s disease: focus on the peripheral immune component [J]. Trends Neurosci, 2023, 46(10): 863-878. 
[30]Cerri S, Mus L, Blandini F. Parkinson’s disease in women and men: what’s the difference [J]? J Parkinsons Dis, 2019, 9(3): 501-515. 
[31]Gillies GE, Pienaar IS, Vohra S, et al. Sex differences in Parkinson’s disease [J]. Front Neuroendocrinol, 2014, 35(3): 370-384. 
[32]Shen KZ, Johnson SW. Ca2+ influx through NMDA-gated channels activates ATP-sensitive K+ currents through a nitric oxide-cGMP pathway in subthalamic neurons [J]. J Neurosci, 2010, 30(5): 1882-1893. 

基金

科技创新2023

PDF(4993 KB)

Accesses

Citation

Detail

段落导航
相关文章

/