羟基红花黄色素A通过调控环氧合酶2/前列腺素E2信号通路减轻大鼠脑缺血再灌注损伤

杨迎春 杨莹 张小良 高赛红 姜庆良 李宇凤 贾书雨

解剖学报 ›› 2024, Vol. 55 ›› Issue (4) : 468-474.

PDF(9291 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(9291 KB)
解剖学报 ›› 2024, Vol. 55 ›› Issue (4) : 468-474. DOI: 10.16098/j.issn.0529-1356.2024.04.013
脑科学研究论著

羟基红花黄色素A通过调控环氧合酶2/前列腺素E2信号通路减轻大鼠脑缺血再灌注损伤

  • 杨迎春* 杨莹 张小良 高赛红 姜庆良 李宇凤 贾书雨
作者信息 +

Hydroxylsafflor yellow A alleviating cerebral ischemia-reperfusion injury in rats by regulating cyclooxygenase-2/ prostaglandin E2 signaling pathway 

  • YANG Ying-chun* YANG Ying ZHANG Xiao-liang GAO Sai-hong JIANG Qing-liang LI Yu-feng JIA Shu-yu
Author information +
文章历史 +

摘要

目的 观察羟基红花黄色素A(HSYA)对环氧合酶2(COX-2)/ 前列腺素E2(PGE2)信号通路的影响,探讨HSYA对脑缺血再灌注损伤(CIRI)的保护机制。方法 90只雄性SD大鼠随机分为假手术组(S组)、手术组(CIRI组)、HSYA组和塞来昔布组(C组),HSYA组进一步分为HSYA低剂量组(HSYA-L组)、HSYA中剂量组(HSYA-M组)和HSYA高剂量组(HSYA-H组),每组15只。线栓法制备脑缺血再灌注损伤模型。各组大鼠于术前30 min腹腔注射给药,HSYA各组分别给予HSYA 10、15、25 mg/kg,C组给予塞来昔布 40 mg/kg,S组和CIRI组给予等量的生理盐水。各组大鼠模型制作苏醒后立刻进行神经功能学评分,再灌注24 h时进行脑梗死体积检测,同时Nissl染色观察神经细胞损伤,Real-time PCR和Western blotting检测COX-2 mRNA和蛋白的变化,ELISA检测PGE2、肿瘤坏死因子α(TNF-α)和白细胞介素(IL)-1β的变化。结果 与S组比较,CIRI组神经功能学评分显著升高(P<0.05),脑梗死体积显著增加(P<0.05),神经细胞损伤较重,数目显著降低(P<0.05),COX-2 mRNA和蛋白的表达显著增多,同时PGE2、TNF-α和IL-1β的表达也显著增多(P<0.05);与CIRI组比较,HSYA组及C组神经功能学评分明显降低(P<0.05),脑梗死体积明显减少(P<0.05),神经细胞损伤减轻,数目明显增加(P<0.05),COX-2 mRNA和蛋白及PGE2、TNF-α和IL-1β的表达均明显下降(P<0.05),且HSYA各组之间及HSYA-L组和HSYA-M组与C组比较差异均较显著(P<0.05),而HSYA-H组与C组比较差异无显著性(P>0.05)。 结论 HSYA减轻缺血性脑卒中再灌注损伤可能与抑制COX-2/PGE2信号通路有关。

Abstract

Objective To observe the effect of hyolroxylsafflor(HSYA) on cyclooxygenase-2(COX-2)/ prostaglandin E2(PGE2) signaling pathway, and to investigate the protective effect and mechanism of HSYA on cerebral ischemia-reperfusion injury(CIRI). Methods Totally 90 SD male rats were randomly divided into sham-operated group(S group), operation group(CIRI group), HSYA group and celecoxib group(C group), HSYA group subdivided into HSYA low dose group(HSYA-L group), HSYA medium dose group (HSYA-M group)and HSYA high dose group(HSYA-H group), 15 rats in each group. CIRI model was prepared by thread embolism method. The rats in each group were given intraperitoneal injection 30 minutes before operation. HSYA groups were given HSYA 10 mg/kg, 15 mg/kg, 25 mg/kg respectirely; C group was given celecoxib 40 mg/kg; S group and CIRI group were given the same amount of normal saline. Neurofunctional scores of each group of rats were performed immediately after recovery from modeling, cerebral infarction volume was measured 24 hours after reperfusion; At the same time, neuronal injury was observed by Nissl staining, the changes of COX-2 mRNA and protein were detected by Real-time PCR and Western blotting, and the changes of PGE2, tumor necrosis factor α(TNF-α) and interleukin(IL)-1β were detected by ELISA.   Results  Compared with the S group, in the CIRI group, neurofunctional scores increased dramatically (P<0.05), the volume of cerebral infarction increased dramatically (P<0.05), the damage of neurons increased and the number of neurons decreased dramatically (P<0.05), the expressions of COX-2 mRNA and protein increased dramatically (P<0.05), meanwhile the expressions of PGE2, TNF-α and IL-1β were also found dramatically increased (P<0.05); Compared with the CIRI group, in the HSYA group and C group, neurofunctional scores decreased dramatically (P<0.05), the volume of cerebral infarction was reduced dramatically (P<0.05), the damage of neurons decreased and the number of neurons increased dramatically (P<0.05), the expressions of COX-2 mRNA and protein, PGE2, TNF-α and IL-1β decreased dramatically(P<0.05). The differences between HSYA groups and both HSYA-L group and HSYA-M group compared with the C group were obvious(P<0.05), while no obvious differences were found in HSYA-H group compared with the C group(P>0.05). Conclusion  HSYA alleviates reperfusion injury in ischemic stroke may be related to the inhibition of COX-2/PGE2 signaling pathway. 

关键词

 羟基红花素A

/ 脑缺血再灌注损伤 / 环氧合酶2/前列腺素E2信号通路 / 实时定量聚合酶链反应 / 免疫印迹法 / 大鼠 

Key words

Hydroxylsafflor yellow A / Cerebral ischemia-reperfusion injury / Cyclooxygenase-2/ prostaglandin E2 signaling pathway / Real-time PCR / Western blotting / Rat
 


引用本文

导出引用
杨迎春 杨莹 张小良 高赛红 姜庆良 李宇凤 贾书雨. 羟基红花黄色素A通过调控环氧合酶2/前列腺素E2信号通路减轻大鼠脑缺血再灌注损伤[J]. 解剖学报. 2024, 55(4): 468-474 https://doi.org/10.16098/j.issn.0529-1356.2024.04.013
YANG Ying-chun YANG Ying ZHANG Xiao-liang GAO Sai-hong JIANG Qing-liang LI Yu-feng JIA Shu-yu. Hydroxylsafflor yellow A alleviating cerebral ischemia-reperfusion injury in rats by regulating cyclooxygenase-2/ prostaglandin E2 signaling pathway [J]. Acta Anatomica Sinica. 2024, 55(4): 468-474 https://doi.org/10.16098/j.issn.0529-1356.2024.04.013
中图分类号:      R329.21    R363.2   

参考文献

[1]Zhang R, Meng J, Wang X, et al. Metabolomics of ischemic stroke: insights into risk prediction and mechanisms[J]. Metab Brain Dis, 2022, 37(7): 2163-2180.

[2]De Meyer SF, Langhauser F, Haupeltshofer S, et al. Thromboinflammation in brain ischemia: recent updates and future perspectives[J]. Stroke, 2022, 53(5): 1487-1499.

[3]Kapanova G, Tashenova G, Akhenbekova A, et al.  Cerebral ischemia reperfusion injury: from public health perspectives to mechanisms[J]. Folia Neuropathol, 2022, 60(4): 384-389.
[4]Xu Y, Liu Y, Li K, et al. Regulation of PGE2 pathway during cerebral ischemia reperfusion injury in rat[J]. Cell Mol Neurobiol, 2021, 41(7): 1483-1496.
[5]Wu X, Peng K, Huang H, et al. MiR-21b-3p protects NS2OY cells against oxygen-glucose deprivation/reperfusion-induced injury by down-regulating cyclooxygenase-2[J]. Am J Transl Res, 2019, 11(5): 3007-3017.
[6]Zhang L, Sui S, Wang S, et al. Neuroprotective effect of corosolic acid against cerebral ischemia-reperfusion injury in experimental rats[J]. Oleo Sci, 2022, 71(10):1501-1510.
[7]Evzelman MA, Mityaeva EV, Lashkhiia IB, et al. Acute cerebral ischemia and inflammation[J]. Zh Nevrol Psikhiatr Im S S Korsakova, 2019, 119(12. Vyp. 2): 73-80. 
[8]Cui J, Jia J. Natural COX-2 Inhibitors as promising anti-inflammatory agents: an update[J]. Curr Med Chem, 2021, 28(18): 3622-3646.
[9]Cheng M, Liang X,Shi L, et al. Folic acid deficiency exacerbates the inflammatory response of astrocytes after ischemia0-reperfusion by enhancing the interaction between IL-6 and JAK-1/pSTAT3[J]. CNS Neurosci Ther, 2023, 29(6): 1537-1546.
[10]Zhang P, Cui J. Neuroprotective effect of fisetin against the cerebral ischemia-reperfusion damage via suppression of oxidative stress and inflammatory parameters[J]. Inflammation, 2021, 44(4): 1490-1506.
[11]Li T, Zhang W, Hu E, et al. Integrated metabolomics and network pharmacology to reveal the mechanisms of hydroxysafflor yellow A against acute traumatic brain injury[J]. Comput Struct Biotechnol J, 2021, 26(19): 1002-1013.
[12]Shi K, Tian DC, Li ZG, et al. Global brain inflammation in stroke[J]. Lancet Neurol, 2019, 18(11): 1058-1066.
[13]Mo ZT, Zheng J, Liao YL. Icariin inhibits the expression of IL-1β, IL-6 and TNF-α induced by OGD/R through the IRE1/XBP1s pathway in microglia[J]. Pharm Biol, 2021, 59(1): 1473-1479.
[14]Hu E, Li T, Li Z, et al. Metabolomics reveals the effects of hydroxysafflor yellow A on neurogenesis and axon regeneration after experimental traumatic brain injury et al[J]. Pharm Biol, 2023, 61(1): 1054-1064.
[15]Cruz JV, Rosa JMC, Kimani NM, et al. The role of celecoxib as a potential inhibitor in the treatment of inflammatory diseases - a review[J]. Curr Med Chem, 2022, 29(17): 3028-3049.
[16]Longa EZ, MD, Weinstein PR, Carlson S,et al. Reversible middle cerebral artery occlusion without caraniectomy in rats[J]. Stroke, 1989, 20(1): 84-91.
[17]Shabani M, Erfani S, Abdolmaleki A, et al. Alpha-pinene modulates inflammatory response and protects against brain ischemia via inducible nitric oxide synthase-nuclear factor-kappa B-cyclooxygenase-2 pathway[J]. Mol Biol Rep, 2023, 50(8): 6505-6516.
[18]Liu J, Zhou Y, Xie C, et al. Anti-ferroptotic effects of bone marrow mesenchymal stem cell-derived extracellular vesicles loaded with ferrostatin-1 in cerebral ischemia-reperfusion injury associate with the GPX4/COX-2 axis[J]. Neurochem Res, 2023, 48(2): 502-518.
[19]Yan Y, Tong F, Chen J. Endogenous BMP-4/ROS/COX-2 mediated IPC and resveratrol alleviated brain damage[J]. Curr Pharm Des, 2019, 25(9): 1030-1039.
[20]Xu Y, Liu Y, Li K, et al. COX-2/PGE2 pathway inhibits the ferroptosis induced by cerebral ischemia reperfusion[J]. Mol Neurobiol, 2022, 59(3): 1619-1631.
[21]Jiang J, Yu Y. Small molecules targeting cyclooxygenase/prostanoid cascade in experimental brain ischemia: Do they translate[J]. Med Res Rev, 2021, 41(2): 828-857.
[22]Kim HK, Lee JJ, Choi G, et al. Gadolinium-based neuroprognostic magnetic resonance imaging agents suppress cox-2 for prevention of reperfusion injury after stroke[J]. J Med Chem, 2020, 63(13): 6909-6923.
[23]Purroy F, Farré-Rodriguez J, Mauri-Capdevila G, et al. Basal IL-6 and S100b levels are associated with infarct volume[J]. Acta Neurol Scand, 2021, 144(5): 517-523.
[24]Kao MH, Wu JS, Cheung WM, et al. Clinacanthus nutans mitigates neuronal death and reduces ischemic brain injury: role of NF-κB-driven IL-1β transcription[J]. Neuromolecular Med, 2021, 23(1): 199-210.
[25]Wei J, Zhang J, Wang D, et al. The COX-2-PGE2 pathway promotes tumor evasion in colorectal adenomas[J]. Cancer Prev Res, 2022, 15(5): 285-296.
[26]Szlasa W, Slusarczyk S, Nawrot-Hadzik I, et al. Betulin and its derivatives reduce inflammation and COX-2 activity in macrophages[J]. Inflammation, 2023, 46(2): 573-583.
[27]Gao P, Rao ZW, Li M, et al. Tetrandrine represses inflammation and attenuates osteoarthritis by selective inhibition of COX-2[J]. Curr Med Sci, 2023, 43(3): 505-513.
[28]Adamstein NH, Cornel JH, Davidson M, et al. Association of interleukin 6 inhibition with ziltivekimab and the neutrophil-lymphocyte ratio: a secondary analysis of the rescue clinical trial[J]. JAMA Cardiol, 2023, 8(2): 177-181.

基金

基于WGCNA方法挖掘调控缺血性脑卒中的关键基因;miRNA-511-5p通过调节COX-2参与大鼠脑缺血再灌注损伤炎症反应的机制研究

PDF(9291 KB)

Accesses

Citation

Detail

段落导航
相关文章

/