基于灌注系统对CUBIC组织透明化技术的优化

宫川惠 邱家怡 印可馨 张继茹 何铖 袁野 吕广明

解剖学报 ›› 2024, Vol. 55 ›› Issue (3) : 363-370.

PDF(6908 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(6908 KB)
解剖学报 ›› 2024, Vol. 55 ›› Issue (3) : 363-370. DOI: 10.16098/j.issn.0529-1356.2024.03.016
技术方法

基于灌注系统对CUBIC组织透明化技术的优化

  •  宫川惠1   邱家怡2   印可馨2   张继茹2   何铖1   袁野1   吕广明1,3*
作者信息 +

Optimisation of CUBIC tissue clearing technology based on perfusion methods

  • GONG  Chuan-hui1  QIU  Jia-yi2  YIN  Ke-xin2  ZHANG  Ji-ru2  HE  Cheng1  YUAN  Ye1  LÜ Guang-ming1,3*
Author information +
文章历史 +

摘要

目的 为了缩短清晰无障碍脑成像鸡尾酒和计算分析(CUBIC)技术的透明时间,提高透明效率,探索亲水性组织透明技术应用的可能性,本研究对CUBIC技术进行灌注优化后,与4种亲水性透明化方法在组织透明效果、透明时间、面积变化、体积变化及腺相关病毒(AAV)荧光保留情况等方面进行了比较。 方法 取6只成年美国癌症研究所(ICR)小鼠的脑、肝、脾和肾分别采用SeeDB、FRUIT、ScaleS、CUBIC的方法进行透明化处理,使用Image J 1.8.0 测算样本的面积和灰度值,排水法测量透明前后体积,比较各组的透明效果、时间以及大小变形。通过改进灌注速率与最佳灌注剂量对CUBIC技术进行灌注优化,每组实验样本量为6。另在16只成年小鼠的大脑运动皮层定位注射AAV,4周后取其颈髓节段透明化处理,荧光照片经过ImageJ1.8.0测量平均荧光强度,评估不同技术的荧光保存情况。 结果 灌注CUBIC的最佳灌注速率和灌注剂量分别是15 ml/min和200 ml。对于透明能力和速度,灌注CUBIC技术的平均灰度值最低且用时最短,而CUBIC消耗的时间最长,SeeDB、FRUIT、ScaleS并没有显示出良好的透明能力。在面积和体积变化方面,几种技术对组织或器官透明后均有不同程度的膨胀。在荧光保留方面,灌注CUBIC对绿色荧光蛋白(GFP)荧光信号的保留效果最好,其次是 CUBIC、ScaleS、FRUIT和 SeeDB。 结论 灌注CUBIC技术与其他技术相比,组织透明效果最好,透明时间最短,AAV荧光保留最多。

Abstract

Objective  In order to shorten the transparency time of clear, unobstructed brain imaging cocktails and computational analysis(CUBIC), improve the transparency efficiency, and explore the possibility of applying hydrophilic tissue transparency technique, this study was conducted to optimize the perfusion of CUBIC technique and compare it with four hydrophilic tissue clearing method  in terms of tissue transparency effect, transparency time, area change, volume change and adeno-associated virus (AAV) fluorescence retention. Methods  Brain, liver, spleen and kidney of 6 adult Institute of Cancer Research(ICR) mice were subjected to clearing treatment by SeeDB, FRUIT, ScaleS and CUBIC method, respectively. The area and gray value of the samples were measured by Image J 1.8.0, and the volume before and after transparency was measured by drainage method  to compare the transparency effect, time and size deformation of each group. Perfusion optimization of the CUBIC was performed by improving the perfusion rate with the optimal perfusion dose, each group of the experimental sample size was 6. Fluorescence preservation by different techniques was evaluated by injecting AAV in the motor cortex of 16 adult mice and taking the cervical spinal segments for transparency treatment after four weeks, and the fluorescence photographs were measured by Image J 1.8.0 to measure the mean fluorescent intensity.  Results The optimal perfusion rate and dose of CUBIC was 15 ml/min and 200 ml respectively. For transparency ability and speed, the perfusion CUBIC had the lowest mean gray value and took the shortest time, while CUBIC consumed the longest time, and SeeDB, FRUIT, and ScaleS did not show good transparency ability. In terms of area and volume changes, several techniques showed different degrees of expansion after transparency of tissues or organs. In terms of fluorescence retention, perfusion CUBIC showed the best retention of green fluorescent protein (GFP) fluorescence signal, followed by CUBIC, ScaleS, FRUIT, and SeeDB. Conclusion Perfusion CUBIC technique shows the best tissue transparency, the shortest transparency time, and the most AAV fluorescence retention compared with other techniques.

关键词

组织透明化 / 光学透明 / 清晰无障碍脑成像鸡尾酒和计算分析 / 亲水性组织透明化技术 / 小鼠

Key words

Tissue clearing / Optical clearing / Clear, unobstructed brain imaging cocktails and computational analysis / Hydrophilic reagent-based tissue clearing technology / Mouse


引用本文

导出引用
宫川惠 邱家怡 印可馨 张继茹 何铖 袁野 吕广明. 基于灌注系统对CUBIC组织透明化技术的优化[J]. 解剖学报. 2024, 55(3): 363-370 https://doi.org/10.16098/j.issn.0529-1356.2024.03.016
GONG Chuan-hui QIU Jia-yi YIN Ke-xin ZHANG Ji-ru HE Cheng YUAN Ye LÜ Guang-ming. Optimisation of CUBIC tissue clearing technology based on perfusion methods[J]. Acta Anatomica Sinica. 2024, 55(3): 363-370 https://doi.org/10.16098/j.issn.0529-1356.2024.03.016
中图分类号: Q189   

参考文献

 [1] Agarwal N, Xu X, Gopi M. Geometry processing of conventionally produced mouse brain slice images [J]. J Neurosci Methods, 2018, 306: 45-56.
 [2] Li YZ, Shao ZhH, Li SG. Application of tissue and organ transparency technology in three-dimensional imaging studies [J]. Acta Anatomica Sinica, 2018, 49(3): 400-405.(in Chinese)
李瑛泽, 邵志华, 李思光. 组织器官透明化技术在三维成像研究中的应用 [J]. 解剖学报, 2018, 49(3): 400-405.
 [3] Erturk A, Becker K, Jahrling N, et al. Three-dimensional imaging of solvent-cleared organs using 3DISCO [J]. Nat Protoc, 2012, 7(11): 1983-1995.
 [4] Ke MT, Fujimoto S, Imai T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction [J]. Nat Neurosci, 2013, 16(8): 1154-1161.
 [5] Matryba P, Bozycki L, Pawlowska M, et al. Optimized perfusion-based CUBIC protocol for the efficient whole-body clearing and imaging of rat organs [J]. J Biophotonics, 2018, 11(5): e201700248.
 [6] Chung K, Deisseroth K. CLARITY for mapping the nervous system [J]. Nat Methods, 2013, 10(6): 508-513.
 [7] Liu L, Xia X, Xiang F, et al. F-CUBIC: a rapid optical clearing method optimized by quantitative evaluation [J]. Biomed Opt Express, 2022, 13(1): 237-251.
 [8] Tainaka K, Murakami TC, Susaki EA, et al. Chemical Landscape for Tissue Clearing Based on Hydrophilic Reagents [J]. Cell Rep, 2018, 24(8): 2196-2210.
 [9] Spalteholz W. Über das Durchsichtigmachen von Menschlichen und Tierischen Präparaten und Seine Theoretischen Bedingungen [M]. 2. aufl. Leipzig: S. Hirzel, 1914.
[10] Fretaud M, Riviere L, Job E, et al. High-resolution 3D imaging of whole organ after clearing: taking a new look at the zebrafish testis [J]. Sci Rep, 2017,7:43012.
 [11] Treweek JB, Chan KY, Flytzanis NC, et al. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping [J]. Nat Protoc, 2015, 10(11): 1860-1896.
 [12] Cheng X, Sadegh S, Zilpelwar S, et al. Comparing the fundamental imaging depth limit of two-photon, three-photon, and non-degenerate two-photon microscopy [J]. Opt Lett, 2020, 45(10): 2934-2937.
 [13] Theer P, Denk W. On the fundamental imaging-depth limit in two-photon microscopy [J]. J Opt Soc Am A Opt Image Sci Vis, 2006, 23(12): 3139-3149.
 [14] Theer P, Hasan M T, Denk W. Two-photon imaging to a depth of 1000 microm in living brains by use of a Ti:Al2O3 regenerative amplifier [J]. Opt Lett, 2003, 28(12): 1022-1024.

 [15] Dodt HU, Leischner U, Schierloh A, et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain [J]. Nat Methods, 2007, 4(4): 331-336.

 [16] Corsetti S, Gunn-Moore F, Dholakia K. Light sheet fluorescence microscopy for neuroscience [J]. J Neurosci Methods, 2019, 319:16-27.

 [17] Huisken J, Swoger J, Del Bene F, et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy [J]. Science, 2004, 305(5686): 1007-1009.
   [18] Keller PJ, Schmidt AD, Wittbrodt J, et al. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy [J]. Science, 2008, 322(5904): 1065-1069.
 [19] Ahrens MB, Orger MB, Robson DN, et al. Whole-brain functional imaging at cellular resolution using light-sheet microscopy [J]. Nat Methods, 2013, 10(5): 413-420.
 [20] Boothe T, Hilbert L, Heide M, et al. A tunable refractive index matching medium for live imaging cells, tissues and model organisms [J]. Elife, 2017, 6: e27240.
 [21] Wang X, Pang Y, Ku G, et al. Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact [J]. Opt Lett, 2003, 28(19): 1739-1741.
 [22] Li L, Xia J, Li G, et al. Label-free photoacoustic tomography of whole mouse brain structures ex vivo[J]. Neurophotonics, 2016, 3(3): 035001.
 [23] Zhang P, Li L, Lin L, et al. High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo[J]. J Biophotonics, 2018, 11(1): 101002/jbio.201700024.

基金

江苏省研究生科研与实践创新计划项目

PDF(6908 KB)

Accesses

Citation

Detail

段落导航
相关文章

/