Exendin-4抑制亲环蛋白A减轻动脉粥样硬化模型小鼠病理表型

杨珊珊 潘宇翔 郑婉 王政

解剖学报 ›› 2024, Vol. 55 ›› Issue (2) : 229-236.

PDF(13105 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(13105 KB)
解剖学报 ›› 2024, Vol. 55 ›› Issue (2) : 229-236. DOI: 10.16098/j.issn.0529-1356.2024.02.015
组织学胚胎学发育生物学

Exendin-4抑制亲环蛋白A减轻动脉粥样硬化模型小鼠病理表型

  • 杨珊珊1 潘宇翔2 郑婉1* 王政1
作者信息 +

Exendin-4 inhibiting cyclophilin A reducing the pathological phenotype of atherosclerotic mice

  • YANG Shan-shan PAN Yu-xiang ZHENG Wan1*  WANG Zheng1
Author information +
文章历史 +

摘要

目的 探讨胰高血糖素样肽1(GLP-1)受体激动剂exendin-4影响亲环蛋白A(CyPA)分泌抑制小鼠动脉粥样硬化(AS)及血管钙化过程的作用。  方法 将20只ApoE-/-小鼠随机分为模型组和exendin-4组,每组10只,高脂饲料喂养建立AS模型,另取10只野生型C57BL/6J小鼠作为对照组,exendin-4组腹腔注射GLP-1R激动剂exendin-4,1次/d,持续8周。8周后,ELISA法测定甘油三酯(TG)、总胆固醇(TC)、高密度脂蛋白-胆固醇(HDL-C)、低密度脂蛋白-胆固醇(LDL-C)、CyPA表达水平,甲基麝香草酚蓝比色法检测血清钙水平,油红O染色检测主动脉粥样硬化斑块,HE染色观察主动脉病理学变化,Von Kossa染色观察主动脉钙盐沉积,免疫组织化学、Real-time PCR及Western blotting检测主动脉Runt相关转录因子2(RUNX2)与骨形态发生蛋白2(BMP-2)表达水平,免疫荧光染色检测主动脉CyPA表达。  结果 与对照组比较,模型组小鼠血清中TG、TC、LDL-C、Ca、CyPA水平升高(P<0.05),主动脉粥样硬化斑块面积均增加(P<0.05),主动脉壁明显增厚且出现大量炎性细胞浸润及钙盐沉积,主动脉组织RUNX2与BMP-2的mRNA及蛋白表达水平均升高(P<0.05),主动脉组织内CyPA表达增强。与模型组比较,exendin-4组小鼠血清中TG、TC、LDL-C、Ca、CyPA水平降低(P<0.05),主动脉粥样硬化斑块面积均减少(P<0.05),主动脉壁增厚与炎性细胞浸润现象明显改善,钙盐沉积减少,主动脉组织RUNX2与BMP-2的 mRNA及蛋白表达水平均降低(P<0.05),同时,主动脉组织内CyPA表达减弱。  结论 GLP-1受体激动剂exendin-4 能够抑制小鼠动脉粥样硬化及血管钙化,其机制可能与减少CyPA的分泌相关。

Abstract

Objective To investigate the effect of glucagon-like peptide 1 (GLP-1) receptor agonists exendin-4 on the secretion of cyclophilin A (CyPA) to inhibit atherosclerosis (AS) and vascular calcification in mice role of the process.   Methods Twenty ApoE-/- mice were randomly divided into model group and exendin-4 group, 10 mice in each group, and were fed with high-fat diet to establish AS model, another 10 wild-type C57BL/6J mice were taken as the control group, and the exendin-4 group was intraperitoneally injected with the GLP-1R agonist exendin-4, 1/d, for 8 weeks. After 8 weeks, the ELISA method  was used to determine the level of triglyceride(TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and CyPA, serum calcium level was detected by methylthymol blue colorimetric method, oil red O staining to detect the development of atherosclerotic plaques in the aorta, HE staining was used to observe the pathological changes of the aorta, Von Kossa staining was used to observe the calcium deposition in the aorta, immunohistochemical staining, Real-time PCR and Western blotting were used to detect the expression levels of aortic RUNX2 and bone morphogenetic protein 2(BMP-2), immunofluorescent staining was used to detect the positive expression of CyPA in aortic tissue.   Results Compared with the control group, the serum levels of TG, TC, LDL-C, Ca and CyPA in the model group increased (P<0.05), the atherosclerotic plaque areas of the aorta increased (P<0.05), the aortic wall was thickened significantly and a large number of inflammatory cells were infiltrated, a large amount of calcium deposits were deposited in the aortic parietal membrane, the positive expression area ratio of RUNX2 and BMP-2, the relative mRNA expression of RUNX2 and BMP-2, the relative protein expression of RUNX2 and BMP-2 in aortic tissue all increased (P<0.05), and the red fluorescence of CyPA expression in aortic tissue was enhanced significantly. Compared with the model group, the serum levels of TG, TC, LDL-C, Ca and CyPA in the exendin-4 group decreased (P<0.05), the atherosclerotic plaque areas of the aorta decreased (P<0.05), the thickening of the aortic wall and the infiltration of inflammatory cells were alleviated significantly, the calcium deposition in the aortic wall was reduced, the positive expression area ratio of RUNX2 and BMP-2, the relative mRNA expression of RUNX2 and BMP-2, the relative protein expression of RUNX2 and BMP-2 in aortic tissue all decreased (P<0.05), and at the same time, the red fluorescence of CyPA expression in aortic tissue was weakened significantly.   Conclusion GLP-1 receptor agonists exendin-4 can inhibit atherosclerosis and vascular calcification in mice, and the mechanism may be related to the reduction of CyPA secretion.

关键词

动脉粥样硬化 / 高血糖素样肽1受体激动剂 / 血管钙化 / 亲环蛋白A / 免疫印迹法 / 免疫荧光 / 小鼠

Key words

Atherosclerosis / Glucagon-like peptide 1 receptor agonist / Vascular calcification / Cyclophilin A / Western blotting / Immunofluorescence / Mouse

引用本文

导出引用
杨珊珊 潘宇翔 郑婉 王政. Exendin-4抑制亲环蛋白A减轻动脉粥样硬化模型小鼠病理表型[J]. 解剖学报. 2024, 55(2): 229-236 https://doi.org/10.16098/j.issn.0529-1356.2024.02.015
YANG Shan-shan PAN Yu-xiang ZHENG Wan WANG Zheng. Exendin-4 inhibiting cyclophilin A reducing the pathological phenotype of atherosclerotic mice[J]. Acta Anatomica Sinica. 2024, 55(2): 229-236 https://doi.org/10.16098/j.issn.0529-1356.2024.02.015
中图分类号: R543.1+2   

参考文献

[1]Fan J, Watanabe T. Atherosclerosis: known and unknown[J]. Pathol Int, 2022, 72(3):151-160.
[2]Li M, Wang ZW, Fang LJ, et al. Programmed cell death in atherosclerosis and vascular calcification[J]. Cell Death Dis, 2022, 13(5):467.
[3]Shen J, Zhao M, Zhang C, et al. IL-1β in atherosclerotic vascular calcification: from bench to bedside[J]. Int J Biol Sci, 2021, 17(15):4353-4364.
[4]Malik F, Li Z. Non-peptide agonists and positive allosteric modulators of glucagon-like peptide-1 receptors: alternative approaches for treatment of Type 2 diabetes[J]. Br J Pharmacol, 2022, 179(4):511-525.
[5]Ferrari F, Scheffel RS, Martins VM, et al. Glucagon-like peptide-1 receptor agonists in type 2 diabetes mellitus and cardiovascular disease: the past, present, and future[J]. Am J Cardiovasc Drugs, 2022, 22(4):363-383.
[6]Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1[J]. Cell Metab, 2018, 27(4):740-756.
[7]Ma X, Liu Z, Ilyas I, et al. GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential[J]. Int J Biol Sci, 2021, 17(8):2050-2068.
[8]Pahk K, Joung C, Song HY, et al. SP-8356, a novel inhibitor of CD147-cyclophilin A interactions, reduces plaque progression and stabilizes vulnerable plaques in apoE-deficient mice[J]. Int J Mol Sci, 2019, 21(1):95.
[9]Anandan V, Thulaseedharan T, Suresh Kumar A, et al. Cyclophilin A impairs efferocytosis and accelerates atherosclerosis by overexpressing CD 47 and down-regulating calreticulin[J]. Cells, 2021, 10(12):3598.
[10]Liao Y, Luo D, Peng K, et al. Cyclophilin A: a key player for etiological agent infection[J]. Appl Microbiol Biotechnol, 2021, 105(4):1365-1377.
[11]Zhang GL. Research progress in clinical application of GLP-1 receptor agonist [J]. China Urban and Rural Enterprise Health, 2021,36 (4): 31-34. (in Chinese)
张贵龙.GLP-1受体激动剂临床应用研究进展[J].中国城乡企业卫生,2021,36(4):31-34.
[12]Rakipovski G, Rolin B, NØhr J, et al. The GLP-1 analogs liraglutide and semaglutide reduce atherosclerosis in ApoE-/- and LDLr-/- mice by a mechanism that includes inflammatory pathways[J]. JACC Basic Transl Sci, 2018, 3(6):844-857.
[13]Rizzo M, Nikolic D, Patti AM, et al. GLP-1 receptor agonists and reduction of cardiometabolic risk: potential underlying mechanisms[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(9 Pt B):2814-2821.
[14]Zhang S, Hong F, Ma C, et al. Hepatic lipid metabolism disorder and atherosclerosis[J]. Endocr Metab Immune Disord Drug Targets, 2022, 22(6):590-600.
[15]Wu Y, Johnson G, Zhao F, et al. Features of lipid metabolism in humanized ApoE knockin rat models[J]. Int J Mol Sci, 2021, 22(15):8262.
[16]Villa-Bellosta R. Vascular calcification: key roles of phosphate and pyrophosphate[J]. Int J Mol Sci, 2021, 22(24):13536.
[17]Wang C, Xu W, An J, et al. Poly(ADP-ribose) polymerase 1 accelerates vascular calcification by upregulating Runx2[J]. Nat Commun, 2019, 10(1):1203.
[18]Liu L, Zeng P, Yang X, et al. Inhibition of vascular calcification[J]. Arterioscler Thromb Vasc Biol, 2018, 38(10):2382-2395.
[19]Kozu K, Satoh K, Aoki T, et al. Cyclophilin A as a biomarker for the therapeutic effect of balloon angioplasty in chronic thromboembolic pulmonary hypertension[J]. J Cardiol, 2020, 75(4):415-423.
[20]Chang CS, Su SL, Chang CC, et al. Cyclophilin-A: a novel biomarker for untreated male essential hypertension[J]. Biomarkers, 2013, 18(8):716-720.
[21]Ramachandran S, Kartha CC. Cyclophilin-A: a potential screening marker for vascular disease in type-2 diabetes[J]. Can J Physiol Pharmacol, 2012, 90(8):1005-1015.
[22]Xue C, Sowden M, Berk BC. Extracellular cyclophilin A, especially acetylated, causes pulmonary hypertension by stimulating endothelial apoptosis, redox stress, and inflammation[J]. Arterioscler Thromb Vasc Biol, 2017, 37(6):1138-1146.
[23]Su Z, Lin M, Su Y, et al. Oxidized low-density lipoprotein inhibits the degradation of cyclophilin A via the lysosome in vascular smooth muscle cells[J]. Am J Transl Res, 2020, 12(7):3964-3973.

基金

海南省卫生健康行业科研项目

PDF(13105 KB)

Accesses

Citation

Detail

段落导航
相关文章

/