多发性硬化和视神经脊髓炎的脑灰质结构分析

刘晓丽 许琳 吴爱雪 闻彩云 李如画 吴安婷 陈黛茜 陈成春

解剖学报 ›› 2024, Vol. 55 ›› Issue (1) : 17-24.

PDF(9030 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(9030 KB)
解剖学报 ›› 2024, Vol. 55 ›› Issue (1) : 17-24. DOI: 10.16098/j.issn.0529-1356.2024.01.003
神经生物学

多发性硬化和视神经脊髓炎的脑灰质结构分析

  •  刘晓丽1 许琳 吴爱雪1 闻彩云3 李如画1 吴安婷1 陈黛茜4  陈成春1*

作者信息 +

 Analysis of cerebral gray matter structure in multiple sclerosis and neuromyelitis optica

  •  LIU Xiao-li 1  XU  Lin2  WU  Ai-xue1  WEN Cai-yun 3  LI Ru-hua1  WU An-ting1 CHEN  Dai-qian CHEN  Cheng-chun1*

Author information +
文章历史 +

摘要

目的  利用基于体素的形态学测量(VBM)和基于皮层的脑形态学测量(SBM)方法对多发性硬化(MS)和视神经脊髓炎(NMO)患者脑灰质体积及皮层厚度进行比较分析,探讨这两种疾病的脑灰质结构变化的差异。  方法  21MS患者,16NMO患者以及19例健康对照者行磁共振常规序列扫描,基于Matlab2014a平台的统计参数工具SPM12以及SPM12下的小工具CAT12,对VBMSBM方法处理的数据进行分析。  结果  MS组与正常对照(NC)组相比,经高斯随机场(GRF)校正后,MS组在左侧枕上回、左侧楔叶、左侧距状皮质、左侧楔前叶、左侧中央后回、左侧中央旁小叶、右侧楔叶、左侧额中回、左侧额上回和左侧额内侧回灰质体积显著性减少(P<0.05);经族系错误(FWE)法校正后,MS组在左侧中央旁小叶、左侧额上回和左侧楔前叶皮层厚度显著性减少(P<0.05)。NMO组与NC组相比,经GRF校正后,NMO组在左侧中央后回、左侧中央前回、左侧顶下小叶、右侧中央前回和右侧额中回灰质体积显著性增加(P<0.05);NMO组在左侧枕中回、左侧枕上回、左侧颞下回、右侧枕中回、左侧额上回眶部、右侧中扣带回、左侧前扣带回、右侧角回和左侧楔前叶灰质体积显著性减少(P<0.05);经FWE校正后,NMO组与NC组相比皮层厚度没有显著性差异的脑区。MS组与NMO组相比,经GRF校正后,MS组在右侧梭状回和右侧额中回灰质体积显著性增加(P<0.05);MS组在左侧丘脑、左侧苍白球、左侧中央前回、左侧额中回、左侧颞中回、右侧苍白球、左侧顶下小叶和右侧顶上小叶灰质体积显著性减少(P<0.05);经FWE校正后,MS组在左侧顶下小叶、左侧顶上小叶、左侧缘上回、左侧中央旁小叶、左侧额上回和左侧楔前叶皮层厚度显著性减少(P<0.05)。  结论  MS患者脑灰质结构萎缩主要累及左侧顶叶区域,NMO患者对于脑灰质结构的改变不敏感。MS患者与NMO患者差异显著性的脑区主要位于脑深部灰质相关核团。

Abstract

Objective  The volume and cortical thickness of gray matter in patients with multiple sclerosis (MS) and neuromyelitis optica (NMO) were compared and analyzed by voxel based morphometry (VBM) and surface-based morphometry (SBM), and the differences in the structural changes of gray matter in the two diseases were discussed.   Methods  A total of 21 MS patients, 16 NMO patients and 19 healthy controls were scanned by routine MRI sequence. The data were processed and analyzed by VBM and SBM method  based on the statistical parameter tool SPM12 of Matlab2014a platform and the small tool CAT12 under SPM12.   Results  Compared with the normal control group (NC), after Gaussian random field (GRF) correction, the gray matter volume in MS group was significantly reduced in left superior occipital, left cuneus, left calcarine, left precuneus, left postcentral, left central paracentral lobule, right cuneus, left middle frontal, left superior frontal and left superior medial frontal (P<0.05). After family wise error (FWE) correction, the thickness of left paracentral, left superiorfrontal and left precuneus cortex in MS group was significantly reduced (P<0.05). Compared with the NC group, after GRF correction, the gray matter volume in the left postcentral, left precentral, left inferior parietal, right precentral and right middle frontal in NMO group was significantly increased (P<0.05). In NMO group, the volume of gray matter in left middle occipital, left superior occipital, left inferior temporal, right middle occipital, left superior frontal orbital, right middle cingulum, left anterior cingulum, right angular and left precuneus were significantly decreased (P<0.05). Brain regions showed no significant differences in cortical thickness between NMO groups after FWE correction. Compared with the NMO group, after GRF correction, the gray matter volume in the right fusiform and right middle frontal in MS group was increased significantly(P<0.05). In MS group, the gray matter volume of left thalamus, left pallidum, left precentral, left middle frontal, left middle temporal, right pallidum, left inferior parietal and right superior parietal were significantly decreased (P<0.05). After FWE correction, the thickness of left inferiorparietal, left superiorparietal, left supramarginal, left paracentral, left superiorfrontal and left precuneus cortex in MS group decreased significantly (P<0.05).   Conclusion  The atrophy of brain gray matter structure in MS patients mainly involves the left parietal region, while NMO patients are not sensitive to the change of brain gray matter structure. The significant difference in brain gray matter volume between MS patients and NMO patients is mainly located in the deep cerebral nucleus mass.

关键词

多发性硬化 / 视神经脊髓炎 / 脑结构 / 基于体素的形态学分析 / 基于皮层的脑形态学分析 /

Key words

Multiple sclerosis
/ Neuromyelitis optica / Structure of brain / Morphological analysis based on voxel / Cerebral morphological analysis / Human

引用本文

导出引用
刘晓丽 许琳 吴爱雪 闻彩云 李如画 吴安婷 陈黛茜 陈成春.

多发性硬化和视神经脊髓炎的脑灰质结构分析

[J]. 解剖学报. 2024, 55(1): 17-24 https://doi.org/10.16098/j.issn.0529-1356.2024.01.003
LIU Xiao-li XU Lin WU Ai-xue WEN Cai-yun LI Ru-hua WU An-ting CHEN Dai-qian CHEN Cheng-chun.

 Analysis of cerebral gray matter structure in multiple sclerosis and neuromyelitis optica

[J]. Acta Anatomica Sinica. 2024, 55(1): 17-24 https://doi.org/10.16098/j.issn.0529-1356.2024.01.003
中图分类号: R455.2   

参考文献

1Prasad S, Chen J. What You need to know about AQP4, MOG, and NMOSDJ. Semin Neurol, 2019(39): 718-731.

 [2Azimian M, Arian M, Shojaei SF, et al. The effectiveness of group hope therapy training on the quality of life and meaning of life in patients with multiple sclerosis and their family caregiversJ. Iran J Psychiatry 2021, 16(3): 260-270.

 [3Rocca MA, Battaglini M, Benedict RH, et al. Brain MRI atrophy quantification in MS from methods to clinical applicationJ. Neurology, 2017, 88(24): 403-413.

 [4Matthews L, Marasco R, Jenkinson M, et al. Distinction of seropositive NMO spectrum disorder and MS brain lesion distributionJ. Neurology, 2013,80(14): 1330-1337.

 [5Ashburner J, Friston KJ. Voxel-based morphometry-the methodsJ. Neuroimage, 2000, 11(6pt 1): 805-821.

 [6Li RCh, Tang J, Yang YF, et al. Volume changes of cerebral gray matter in patients with obsessive-compulsive disorder ——morphological analysis based on voxelJ. Acta Anatomica Sinica, 2021, 52(5): 692-697. (in Chinese)

李若川, 唐洁, 杨勇锋, . 强迫症患者大脑灰质体积变化 ———基于体素的形态学分析[J. 解剖学报, 2021, 52(5): 692-697.

 [7Goto M, Abe O, Hagiwara A, et al. Advantages of using both voxel-and surface-based morphometry in cortical morphology analysis: a review of various applicationsJ. Magn Reson Med Sci, 2022, 21(1): 41-57.

 [8Prinster A, Quarantelli M, Lanzillo R, et al. A voxel-based morphometry study of disease severity correlates in relapsing-remitting multiple sclerosisJ. Mult Scler, 2010, 16(1): 45-54.

 [9Zhang X, Zhang F, Huang D, et al. Contribution of gray and white matter abnormalities to cognitive impairment in multiple sclerosisJ. Int J Mol Sci, 2016, 18(1): 1-13.

 [10Eshaghi A, Marinescu RV, Young AL, et al. Progression of regional grey matter atrophy in multiple sclerosisJ. Brain, 2018, 141(6): 1665-1677.

 [11Steenwijk MD, Geurts JJ, Daams M, et al. Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevantJ. Brain, 2016, 139(1): 115-126.

 [12Von Glehn F, Jarius S, Cavalcanti Lira RP, et al. Structural brain abnormalities are related to retinal nerve fiber layer thinning and disease duration in neuromyelitis optica spectrum disordersJ. Mult Scler, 2014, 20(9): 1189-1197.

  [13Sanchez-Catasus CA, Cabrera-Gomez J, Almaguer Melian W, et al. The number of optic neuritis attacks is a potential confounder when comparing patients with NMO vs. controls by voxel-based neuroimaging analysisJ. Acta Radiol, 2016, 57(8): 985-991.

  [14Calabrese M, Oh MS, Favaretto A, et al. No MRI evidence of cortical lesions in neuromyelitis opticaJ. Neurology, 2012, 79(16): 1671-1676.

  [15Pichiecchio A, Tavazzi E, Poloni G, et al. Advanced magnetic resonance imaging of neuromyelitis optica: a multiparametric approachJ. Mult Scler, 2012, 18(6): 817-824.

  [16Wang T, Lian Z, Wu X, et al. Subcortical structural abnormalities in female neuromyelitis optica patients with neuropathic painJ. Mult Scler Relat Disord, 2020, 37: 101432.

  [17Liu Y, Xie T, He Y, et al. Cortical thinning correlates with cognitive change in multiple sclerosis but not in neuromyelitis opticaJ. Eur Radiol, 2014, 24(9): 2334-2343.

  [18Duan Y, Liu Y, Liang P, et al. Comparison of grey matter atrophy between patients with neuromyelitis optica and multiple sclerosis: a voxel-based morphometry studyJ. Eur J Radiol, 2012, 81(2): 110-114.

  [19Pudlac A, Burgetova A, Dusek P, et al. Deep gray matter iron content in neuromyelitis optica and multiple sclerosisJ. Biomed Res Int, 2020, 2020: 6492786.

  [20Minagar A, Barnett MH, Benedict RH, et al. The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspectsJ. Neurology, 2013, 80(2): 210-219.

  [21Schoonheim MM, Popescu V, Rueda Lopes FC, et al. Subcortical atrophy and cognition: sex effects in multiple sclerosisJ. Neurology, 2012, 79(17): 1754-1761.

  [22Lansley J, Mataix-Cols D, Grau M, et al. Localized grey matter atrophy in multiple sclerosis: a meta-analysis of voxel-based morphometry studies and associations with functional disabilityJ. Neurosci Biobehav Rev, 2013, 37(5): 819-830.

  [23Solana E, Martinez-Heras E, Montal V, et al. Regional grey matter microstructural changes and volume loss according to disease duration in multiple sclerosis patientsJ. Sci Rep, 2021, 11(1): 1-11.

  [24Benedict RH, Hulst HE, Bergsland N, et al. Clinical significance of atrophy and white matter mean diffusivity within the thalamus of multiple sclerosis patientsJ. Mult Scler, 2013, 19(11): 1478-1484.

  [25Magon S, Chakravarty MM, Amann M, et al. Label-fusion-segmentation and deformation-based shape analysis of deep gray matter in multiple sclerosis: the impact of thalamic subnuclei on disabilityJ. Hum Brain Mapp, 2014, 35(8): 4193-4203.

多发性硬化和视神经脊髓炎的脑灰质结构分析

" title="Share on Weibo" target="_blank">
PDF(9030 KB)

Accesses

Citation

Detail

段落导航
相关文章

/