基于FPFH-PointNet的术中膝关节软骨表面点云自动提取

刘颜静 史勇红

解剖学报 ›› 2023, Vol. 54 ›› Issue (5) : 553-559.

PDF(8140 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(8140 KB)
解剖学报 ›› 2023, Vol. 54 ›› Issue (5) : 553-559. DOI: 10.16098/j.issn.0529-1356.2023.05.008
解剖学

基于FPFH-PointNet的术中膝关节软骨表面点云自动提取

  •   刘颜静1,2  史勇红1,2*
作者信息 +

Automatic extraction of point cloud on cartilage surface of intraoperative knee using FPFH-PointNet

  • LIU  Yan-jing1,2  SHI  Yong-hong1,2*
Author information +
文章历史 +

摘要

目的  机器人辅助膝关节置换术导航系统采用激光扫描仪获取术中软骨点云,并与术前模型配准,实现自动非接触空间注册。术中患者膝关节病变点云包含大量的肌肉、肌腱、韧带及手术器械等无关背景点云。手动去除无关点云会因人机交互而占据手术时间,因此,本研究提出一种新颖的膝关节软骨表面点云自动提取方法,以便快速精准实施术中注册。  方法  PointNet因缺乏软骨表面和几何局部信息的充分描述,不能高精度地提取软骨点云。本研究提出了一种结合快速点特征直方图FPFH-PointNet方法,该方法有效地描述了软骨点云表观,实现了软骨表面点云的自动高效分割。    结果  本研究以从不同角度扫描10例尸体膝关节标本和1例人腿模型的股骨远端软骨点云为数据集。PointNet和FPFH-PointNet分割软骨点云的准确率分别为0.94±0.003和0.98 ± 0,平均交并比(mIOU)分别为0.83±0.015和0.93 ± 0.005。FPFH-PointNet相比于PointNet,准确率和mIOU分别提高了4%和10%,而耗时仅约为1.37s。   结论  FPFH-PointNet能够精准地自动提取术中膝关节软骨点云,满足了术中导航的性能需求。

Abstract


 Objective  The navigation system of robot-assisted knee arthroplasty uses a laser scanner to acquire intraoperative cartilage point clouds and align them with the preoperative model for automatic non contact space registration. The intraoperative patient knee lesion point cloud contains a large number of irrelevant background point clouds of muscles, tendons, ligaments and surgical instruments. Manual removal of irrelevant point clouds takes up surgery time due to human-computer interaction, so in this study we proposed a novel method  for automatic extraction of point clouds from the knee cartilage surface for fast and accurate intraoperative registration.    Methods  Due to the lack of adequate description of cartilage surface and geometric local information, PointNet cannot extract cartilage point clouds with high precision. In this paper, a fast point feature histogram(FPFH)-PointNet method  combined with fast point feature histogram was proposed, which effectively described the appearance of cartilage point cloud and achieved the automatic and efficient segmentation of cartilage point cloud.    Results  The point clouds of distal femoral cartilage of 10 cadaveric knee specimens and 1 human leg model were scanned from different directions as data sets. The accuracy of cartilage point cloud segmentation by PointNet and FPFH-PointNet were 0.94 ±0.003 and 0.98 ±0, and mean intersection over union(mIOU) were 0.83 ±0.015 and 0.93 ±0.005, respectively. Compared with PointNet, FPFH-PointNet improved accuracy and mIOU by 4% and 10% respectively, while the elapsed time was only about 1.37 s.    Conclusion  FPFH-PointNet can accurately and automatically extract the knee cartilage point cloud, which meets the performance requirement for intraoperative navigation.

关键词

膝关节置换术 / 手术导航 / 点云分割 / PointNet / 快速点特征直方图 / 人 

Key words

 Knee arthroplasty / Surgical navigation / Point cloud segmentation / PointNet / Fast point feature histogram / Human

引用本文

导出引用
刘颜静 史勇红. 基于FPFH-PointNet的术中膝关节软骨表面点云自动提取[J]. 解剖学报. 2023, 54(5): 553-559 https://doi.org/10.16098/j.issn.0529-1356.2023.05.008
LIU Yan-jing SHI Yong-hong. Automatic extraction of point cloud on cartilage surface of intraoperative knee using FPFH-PointNet[J]. Acta Anatomica Sinica. 2023, 54(5): 553-559 https://doi.org/10.16098/j.issn.0529-1356.2023.05.008
中图分类号: CP391   

参考文献

 [1]Jiao  PF, Liu Y, Bi ZhY. Three dimensional digitized dental model with root based on laser scanning and CT data[J]. Chinese Journal of Clinical Anatomy, 2013,31(4):389-392. (in Chinese) 
焦培峰, 刘阳, 毕振宇. 基于激光扫描与CT建立带牙根的三维数字化牙颌模型[J]. 中国临床解剖学杂志, 2013,31(4):389-392. 
 [2]Joshi  SV, Rowe PJ. A novel approach for intra-operative shape acquisition of the tibio-femoral joints using 3D laser scanning in computer assisted orthopaedic surgery[J]. Int J Med Robot, 2018,14(1): e1855.  
 [3]Shamir RR, Freiman M, Joskowicz L, et al. Surface-based facial scan registration in neuronavigation procedures: a clinical study[J]. J Neurosurg, 2009,111(6): 1201-1206.  
 [4]Chan B, Auyeung J, Rudan JF, et al. Intraoperative application of hand-held structured light scanning: a feasibility study[J]. Int J Comput Assist Radiol Surg, 2016,11(6): 1101-1108.  
 [5]Zhang J, Zhao X, Chen Z, et al. A review of deep learning-based semantic segmentation for point cloud[J]. IEEE Access, 2019,7: 179118-179133. 
 [6]Liu YQ, Ao JF. 3D point cloud semantic segmentation based on multi-information deep learning[J]. Laser and Infrared, 2021,51(5): 675-680. (in Chinese) 
刘友群, 敖建锋. 基于多信息深度学习的3D点云语义分割[J]. 激光与红外, 2021,51(5): 675-680. 
 [7]Su H, Maji S, Kalogerakis E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]. Santiago: IEEE International Conference on Computer Vision, 2015.  
 [8]Lawin FJ, Danelljan M, Tosteberg P, et al. Deep projective 3D semantic segmentation[C]. Ystad:International Conference on Computer Analysis of Images and Patterns (ICCAIP), 2017.  
 [9]Alonso I, Riazuelo L, Montesano L, et al. 3D-MiniNet: learning a 2D Representation from point clouds for fast and efficient 3D lidar semantic segmentation[J]. IEEE Robotics and Automation Letters, 2020,5(4): 5432-5439.  
 [10]Maturana D, Scherer S. VoxNet: A 3D convolutional neural network for real-time object recognition[C]. Hamburg: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015.  
 [11]Zhai ZL, Zhang X, Yao LY. Multi-scale dynamic graph convolution network for point clouds classification[J]. IEEE Access, 2020, (99): 1.  
 [12]Qi  CR, Su H, Mo K, et al. PointNet: deep learning on Point Sets for 3D classification and segmentation[C]. Honolulu : IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.  
 [13]Qi CR, Yi L, Su H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]. Long Beach: Neural Information Processing Systems 30 (NIPS), 2017.  
 [14]Wang Y, Sun Y, Liu Z, et al. Dynamic graph CNN for learning on Point Clouds[J]. ACM Transactions on Graphics, 2019:38(5):1-12. 
 [15]Rusu RB, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration[C]. Kobe: IEEE International Conference on Robotics and Automation, 2009.  


  [16]Rusu RB, Blodow N, Marton ZC, et al. Aligning Point Cloud Views using Persistent Feature Histograms[C]. Nice: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008.  

 [17]Liu Y, Yao D, Zhai Z, et al. Fusion of multimoodality image and point cloud for spatial surface registration for knee arthroplasty [J]. Int J Med Robot, 2022,18(5): e2426.  
      


PDF(8140 KB)

Accesses

Citation

Detail

段落导航
相关文章

/