神经解剖学研究的发展趋势

李云庆

解剖学报 ›› 2023, Vol. 54 ›› Issue (3) : 368-373.

PDF(820 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(820 KB)
解剖学报 ›› 2023, Vol. 54 ›› Issue (3) : 368-373. DOI: 10.16098/j.issn.0529-1356.2023.03.016
综述

神经解剖学研究的发展趋势

  • 李云庆*
作者信息 +

Trends in neuroanatomical research

  • LI  Yun-qing*
Author information +
文章历史 +

摘要

神经元及其神经纤维形成的联系是神经系统的基本结构。识别神经系统内不同部位的不同类型神经元,揭示它们构成的传出和传入神经纤维联系,阐明参与其功能活动的神经活性物质和受体,是实现对神经元活动进行主动调控和揭示神经系统工作原理的基础,也是神经解剖学研究的目的。现代科学技术的迅猛发展和学科交叉渗透,既要求我们要立足从特异神经元构成的特定神经通路通过特种神经活性物质发挥的特色神经功能方面开展深入的神经解剖学研究,也为我们分别从宏观、介观和微观水平阐明神经系统的结构和解析其工作原理提供了良机。

Abstract

The basic structure of the nervous system is neurons and the connections formed by nerve fibers. Identifying different types of neurons in different parts of the nervous system, revealing the efferent and afferent nerve fibers they constitute, and elucidating the neuroactive substances and receptors involved, provide the basis for the regulation of neuronal activity and the uncovering of how the nervous system works. It is also the goal of neuroanatomy research. The rapid development of modern science and technology and interdisciplinary penetration require us to conduct in-depth neuroanatomy studies on specific neural pathways composed of specific types of neurons using specific neuroactive substances for specific neural functions. This also provides a good opportunity for us to clarify the structure of nervous system and analyze its working principle from macroscopic, mesoscopic and microscopic levels. 

关键词

神经解剖学 / 神经元 / 神经通路 / 神经活性物质 / 受体 / 神经元活动调控

Key words

Neuroanatomy / Neuron / Neural pathway / Neuroactive substance / Receptor / Regulation of neuronal activity

引用本文

导出引用
李云庆. 神经解剖学研究的发展趋势[J]. 解剖学报. 2023, 54(3): 368-373 https://doi.org/10.16098/j.issn.0529-1356.2023.03.016
LI Yun-qing. Trends in neuroanatomical research[J]. Acta Anatomica Sinica. 2023, 54(3): 368-373 https://doi.org/10.16098/j.issn.0529-1356.2023.03.016
中图分类号: R321   

参考文献

[1]Han JS. Basic Neuroscience [M]. 4th ed, Beijing: Peking University Medical Press, 2022:157-177. (in Chinese)
韩济生. 神经科学 [M]. 第4版,北京:北京大学医学出版社,2022:157-177. 
[2]Zhu ChG. Neuroanatomy [M]. 2nd ed, Beijing: People’s Medical Publishing House, 2009:105-339 (in Chinese)
朱长庚. 神经解剖学 [M]. 第2版,北京:人民卫生出版社,2009:105-339.
[3]Ziegenhain C, Vieth B, Parekh S, Reinius B, et al. Comparative analysis of single-cell RNA sequencing methods [J]. Mol Cell, 2017, 65(4):631-643.
[4]Roy DS, Zhang Y, Halassa MM, et al. Thalamic subnetworks as units of function [J]. Nat Neurosci, 2022, 25(2):140-153.
[5]Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade [J]. Nat Protoc, 2018,13(4):599-604.
[6]Moncada R, Barkley D, Wagner F, et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas [J]. Nat Biotechnol, 2020, 38(3):333-342.
[7]Fishell G, Kepecs A. Interneuron types as attractors and controllers [J]. Annu Rev Neurosci, 2020, 43:1-30.
[8]Huang J, Wang W, Chen J, et al. Neurochemical features of enkephalinergic neurons in the mouse trigeminal subnucleus caudalis [J]. Neurochem Int, 2011, 58(1):44-51.
[9]Wang J, Li ZH, Feng B, et al. Corticotrigeminal projections from the insular cortex to the trigeminal caudal subnucleus regulate orofacial pain after nerve injury via extracellular signal-regulated kinase activation in insular cortex neurons [J]. Front Cell Neurosci, 2015, 9:493.
[10]Li YQ. Application of GFP gene recombinant virus in the neuroanatomical studies [J]. Acta Anatomica Sinica, 2002, 33(3): 307-311. (in Chinese)
李云庆. GFP基因重组病毒在神经解剖研究中的应用 [J]. 解剖学报,2002,33(3):307-311.
[11]Middlebrooks EH, Grewal SS. Brain Connectomics [J]. Neuroimaging Clin N Am, 2022; 32(3):543-552.
[12]Jiang TZ. Brainnetome: a new-ome to understand the brain and its disorders [J]. NeuroImage, 2013; 80: 263-272.
[13]Li JL, Kaneko T, Nomura S, et al. Assiciation of serotonin-like immunoreactive axons with nociceptive projection neurons in the caudal spinal trigeminal nucleus of the rat [J]. J Comp Neurol, 1997, 384(1):127-141.
[14]Liang SH, Zhao WJ, Yin JB, et al. A neural circuit from thalamic paraventricular nucleus to central amygdala for the facilitation of neuropathic pain [J]. J Neurosci, 2020, 40(41): 7848-7865.
[15]Ren D, Li JN, Qiu XT, et al. Anterior cingulate cortex mediates hyperalgesia and anxiety induced by chronic pancreatitis in rats [J]. Neurosci Bull, 2022, 38(4):342-358.
[16]Yin JB, Liang SH, Zhao WJ, et al. dmPFC-vlPAG projection neurons contribute to pain threshold maintenance and antianxiety behaviors [J]. J Clin Invest, 2020, 130(12):6555-6570.
[17]Wickersham IR, Lyon DC, Barnard RJO, et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons [J]. Neuron, 2007, 53(5):639-647.
[18]Chen T, Taniguchi W, Chen QY, et al. Top-down descending facilitation of spinal sensory excitatory transmission from the anterior cingulate cortex [J]. Nature Commun, 2018, 9(1):1886.
[19]Beier KT, Saunders AB, Oldenburg IO, et al. Vesicular stomatitis virus with the rabies virus glycoprotein directs retrograde transsynaptic transport among neurons in vivo [J]. Front Neural Circuits, 2013, 7:11.
[20]Fu JY, Yu XD, Zhu Y, et al. Whole-brain map of long-range monosynaptic inputs to different cell types in the amygdala of the mouse [J]. Neurosci Bull, 2020, 36(11):1381-1394.
[21]Chung K, Wallace J, Kim SY, et al. Structural and molecular interrogation of intact biological systems [J]. Nature, 2013, 497(7449):332-337.
[22]Lin R, Wang RY, Yuan J, et al. Cell-type-specific and projection-specific brain-wide reconstruction of single neurons [J]. Nat Methods, 2018, 15(12):1033-1036.
[23]Zingg B, Chou X, Zhang Z, et al. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors [J]. Neuron, 2017, 93(1): 33-47.
[24]Yang HB, de Jong JW, Cerniauskas I, et al. Pain modulates dopamine neurons via a spinal-parabrachial-mesencephalic circuit [J]. Nat Neurosci, 2021, 24(10):1402-1413.
[25]Li JN, Ren JH, He CB, et al. Projections from the lateral parabrachial nucleus to the lateral and ventral lateral periaqueductal gray subregions mediate the itching sensation [J]. Pain, 2021, 162(6):1848-1863.
[26]Gu ZH, Wang B, Kou ZZ, et al. Endomorphins: promising pndogenous opioid peptides for the development of novel analgesics [J]. Neurosignals, 2017, 25(1):98-116.
[27]Chen T, Li J, Feng B, et al. Mechanism underlying the analgesic effect exerted by endomorphin-1 in the rat ventrolateral periaqueductal gray [J]. Mol Neurobiol, 2016, 53(3):2036-2053.
[28]Shen CJ, Zheng D, Li KX, et al. Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior [J]. Nat Med, 2019, 25(2):337-349.
[29]Sun FM, Zeng JZ, Jing M, et al. A genetically-encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice [J]. Cell, 2018, 174(2): 481-496.e19.
[30]Urban DJ, Roth BL. DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility [J]. Annu Rev Pharmacol Toxicol, 2015, 55:399-417.
[31]Desseroth K, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity [J]. Nature Neurosci, 2005, 8(9): 1263-1268.
[32]Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience [J]. Nature Neurosci, 2015, 18(9): 1213-1225.
[33]Yizhar O, Fenno LE, Davidson TJ, et al. Optogenetics in neural systems [J]. Neuron, 2011, 71(1):9-34.
[34]Teng XY, Li YQ. Optogenetic technique — a switch of controlling the activities of neurons[J]. Negative, 2017, 8(5): 48-51. (in Chinese)
藤孝宇,李云庆. 光遗传学技术——控制神经元活动的“开关” [J]. 医学争鸣,2017,8(5):48-51.
[35]Lin DY, Boyle MP, Dollar P, et al. Functional identification of an aggression locus in the mouse hypothalamus [J]. Nature, 2011, 470(7333):221-226.
[36]Hibberd TJ, Feng J, Luo JJ, et al. Optogenetic induction of colonic motility in mice [J]. Gastroenterology, 2018,155(2):514-528.e6.
[37]Li LZ, Lu LH, Ren YQ, et al. Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe [J]. Nat Commun, 2022, 13(1):839.
[38]Zhang MM, Geng AQ, Chen K, et al. Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational pain [J]. Neuron, 2022, 110(12):1993-2008.e6.

基金

丘脑室旁核参与慢性痛及相关负性情绪调控的环路研究及干预;肠肌间神经丛的去甲肾上腺素能神经元调控肠运动的机制研究

PDF(820 KB)

Accesses

Citation

Detail

段落导航
相关文章

/