低氧低糖及血清剥夺联合处理抑制Nrf2信号通路诱发大鼠骨髓间充质干细胞氧化应激和凋亡

谢秋敏 孙艳婷 许皓 刘蕙文 易勤 谭彬 田杰 朱静

解剖学报 ›› 2023, Vol. 54 ›› Issue (3) : 305-312.

PDF(12087 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(12087 KB)
解剖学报 ›› 2023, Vol. 54 ›› Issue (3) : 305-312. DOI: 10.16098/j.issn.0529-1356.2023.03.008
细胞和分子生物学

低氧低糖及血清剥夺联合处理抑制Nrf2信号通路诱发大鼠骨髓间充质干细胞氧化应激和凋亡

  • 谢秋敏1 孙艳婷1 许皓2 刘蕙文1 易勤1 谭彬1 田杰3 朱静1*
作者信息 +

Glucose and serum deprivation under hypoxia treatment inducing oxidative stress and apoptosis in rat bone marrow mesenchymal stem cells through inhibition of Nrf2 signaling pathway

  • XIE  Qiu-min1  SUN Yan-ting1  XU Hao2  LIU Hui-wen1  YI Qin TAN Bin1  TIAN Jie3  ZHU Jing1*
Author information +
文章历史 +

摘要

目的 探讨低氧低糖血清剥夺(GSDH)处理对大鼠骨髓间充质干细胞(BMSCs)氧化应激及凋亡的影响。  方法 在体外对提取纯化后的原代BMSCs利用低氧(1% O2)、低糖(1.0g/L)及血清剥夺联合处理建立BMSCs细胞损伤模型。采用集落形成实验、细胞周期测定以及CCK-8实验检测细胞增殖能力;划痕实验和Transwell实验检测细胞迁移能力;通过细胞凋亡试剂(AnnexinV-FITC/PI)、线粒体膜电位检测试剂(JC-1)染色和线粒体荧光探针(Mito-Trancker)检测细胞凋亡;细胞活性氧簇(ROS)和钙离子(Fluo-4AM)检测细胞氧化应激水平;Western blotting检测抗氧化应激相关分子谷胱甘肽过氧化物酶4(GPX4)等以及核因子红细胞系2相关因子2(Nrf2)信号通路中关键分子的蛋白表达水平。  结果 大鼠原代BMSCs表面标志物高表达CD29、CD71,低表达CD45、CD34;GSDH处理抑制BMSCs细胞增殖(P<0.05)和迁移(P<0.05),增加ROS和钙离子水平(P<0.05),且抑制抗氧化应激相关分子GPX4等蛋白表达(P<0.01);与空白对照组相比,GSDH处理后BMSCs凋亡显著升高(P<0.05), 线粒体膜电位降低(P<0.01),网络化减少(P<0.01)。Nrf2信号通路中Nrf2蛋白及下游关键分子的蛋白表达水平均降低(P<0.05)。  结论 GSDH处理诱发的BMSCs氧化应激及进一步导致的凋亡损伤与Nrf2信号通路被抑制有关。

Abstract

Objective To investigate the effects of glucose and serum deprivation under hypoxia(GSDH)treatment on oxidative stress and apoptosis in rat bone marrow mesenchymal stem cells (BMSCs), so to provide an experimental support for improving the therapeutic efficacy of BMSCs.   Methods The cell injury model was established by hypoxia (1% O2), hypoglycemia (1.0 g/L) and serum deprivation in vitro with extracted and purified rat primary BMSCs. The proliferation ability of BMSCs was detected by colony formation assay, cell cycle assay and CCK-8 assay; the migration ability was observed by wound healing assay and Transwell assay; BMSCs apoptosis was detected by apoptosis assay kit(AnnexinV-FITC/PI), mitochondrial membrane potential assay kit(JC-1) staining and mitochondrial fluorescence probe(Mito-Tracker) staining; Reactive oxygen species (ROS) and calcium ion were used to detect the levels of cellular oxidative stress; Western blotting was conducted to measure the expression level of anti-oxidative stress-related protein glutathione peroxidase 4(GPX4) and the key protein expression of nuclear factor erthroid 2-related factor 2(Nrf2) pathway.   Results Rat primary BMSCs highly expressed CD29 and CD71 and lowly expressed CD45 and CD34; GSDH treatment inhibited cell proliferation (P<0.05) and migration (P<0.05)  of BMSCs, increased ROS and calcium ion levels (P<0.05), and suppressed the protein expression of anti-oxidative stress-related protein GPX4 and GCLC (P<0.01); compared with the blank control group, the apoptosis of BMSCs was significantly increased after GSDH treatment (P<0.05) and the mitochondrial membrane potential (P<0.01) and network size (P<0.01) was reduced. The expression levels of Nrf2 protein as well as the downstream key proteins in the Nrf2 signaling pathway were decreased (P<0.05).   Conclusion The oxidative stress and the further apoptotic damage induced by GSDH treatment in BMSCs are related to the inhibition of Nrf2 signaling pathway.

关键词

低氧低糖血清剥夺 / 氧化应激 / 骨髓间充质干细胞 / 免疫印迹法 / 大鼠

Key words

Glucose and serum deprivation under hypoxia / Oxidative stress / Bone marrow mesenchymal stem cell / Western blotting / Rat 

引用本文

导出引用
谢秋敏 孙艳婷 许皓 刘蕙文 易勤 谭彬 田杰 朱静. 低氧低糖及血清剥夺联合处理抑制Nrf2信号通路诱发大鼠骨髓间充质干细胞氧化应激和凋亡[J]. 解剖学报. 2023, 54(3): 305-312 https://doi.org/10.16098/j.issn.0529-1356.2023.03.008
XIE Qiu-min SUN Yan-ting XU Hao LIU Hui-wen YI Qin TAN Bin TIAN Jie ZHU Jing.
Glucose and serum deprivation under hypoxia treatment inducing oxidative stress and apoptosis in rat bone marrow mesenchymal stem cells through inhibition of Nrf2 signaling pathway
[J]. Acta Anatomica Sinica. 2023, 54(3): 305-312 https://doi.org/10.16098/j.issn.0529-1356.2023.03.008
中图分类号: R459.9   

参考文献

[1]Fu X, Liu G, Halim A, et al. Mesenchymal stem cell migration and tissue repair[J]. Cells, 2019, 8(8):784.
[2]Nystedt J, Anderson H, Tikkanen J, et al. Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells[J]. Stem Cells, 2013, 31(2): 317-326.
[3]Hang GW, Gu TX, Sun XJ, et al. Edaravone promotes activation of resident cardiac stem cells by transplanted mesenchymal stem cells in a rat myocardial infarction model[J]. J Thorac Cardiovasc Surg, 2016, 152(2): 570-582.
[4]Deng R, Liu Y, He H, et al. Haemin pre-treatment augments the cardiac protection of mesenchymal stem cells by inhibiting mitochondrial fission and improving survival[J]. J Cell Mol Med, 2020, 24(1): 431-440.
[5]Song HF, Tan JY, Liu Y, et al. Hypoxic pretreatment enhancing the angiogenesis of aged human bone marrow mesenchymal stem cells through hypoxia inducible factor-1α[J]. Acta Anatomica Sinica, 2022, 1(53):35-41. (in Chinese)
宋慧芳,谈佳音,刘阳,等.低氧预处理通过激活低氧诱导因子 1α 增强老年人骨髓间充质干细胞促血管新生能力[J]. 解剖学报,2022,1(53):35-41.
[6]Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells[J]. Nat Med, 2005, 11(4): 367-368.
[7]Cui X, Jing X, Yi Q, et al. IL22 furthers malignant transformation of rat mesenchymal stem cells, possibly in association with IL22RA1/STAT3 signaling[J]. Oncol Rep, 2019, 41(4): 2148-2158.
[8]Du ZhP, Yin GT, Li MM, et al. Comparison of surface markers of mesenchymal stem cells from different sources[J]. Acta Anatomica Sinica, 2019, 50(5): 589-594. (in Chinese)
杜志朋,殷国田,李苗苗,等. 不同来源间充质干细胞表面标记的比较[J]. 解剖学报,2019,50(5):589-594.
[9]Zhang B, Zhang J, Zhu D, et al. Mesenchymal stem cells rejuvenate cardiac muscle after ischemic injury[J]. Aging (Albany NY), 2019, 11(1): 63-72.
[10]Dang J, Yang J, Yu Z, et al. Bone marrow mesenchymal stem cells enhance angiogenesis and promote fat retention in fat grafting via polarized macrophages[J]. Stem Cell Res Ther, 2022, 13(1): 52.
[11]Song JL, Zheng W, Chen W, et al. Lentivirus-mediated microRNA-124 gene-modified bone marrow mesenchymal stem cell transplantation promotes the repair of spinal cord injury in rats[J]. Exp Mol Med, 2017, 49(5): e332.
[12]Yu Y, Chen M, Yang S, et al. Osthole enhances the immunosuppressive effects of bone marrow-derived mesenchymal stem cells by promoting the Fas/FasL system[J]. J Cell Mol Med, 2021, 25(10): 4835-4845.
[13]Robinson A J, Hopkins G L, Rastogi N, et al. Reactive oxygen species drive proliferation in acute myeloid leukemia via the glycolytic regulator PFKFB3[J]. Cancer Res, 2020, 80(5): 937-949.
[14]Maraldi T, Angeloni C, Prata C, et al. NADPH oxidases: redox regulators of stem cell fate and function[J]. Antioxidants (Basel), 2021, 10(6): 973.
[15]Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species[J]. Biochim Biophys, Acta, 2016, 1863(12): 2977-2992.
[16]Chaudhuri D, Artiga DJ, Abiria SA, et al. Mitochondrial calcium uniporter regulator 1 (MCUR1) regulates the calcium threshold for the mitochondrial permeability transition[J]. Proc Natl Acad Sci USA, 2016, 113(13): E1872-1880.
[17]Cui R, Yan L, Luo Z, et al. Blockade of store-operated calcium entry alleviates ethanol-induced hepatotoxicity via inhibiting apoptosis[J]. Toxicol Appl Pharmacol, 2015, 287(1):52-66.
[18]Dhalla NS, Elimban V, Bartekova M, et al. Involvement of oxidative stress in the development of subcellular defects and heart disease[J]. Biomedicines, 2022, 10(2): 393.
[19]Qiu YB, Wan BB, Liu G, et al. Nrf2 protects against seawater drowning-induced acute lung injury via inhibiting ferroptosis[J]. Respir Res, 2020, 21(1):232.
[20]Foglia B, Parola M. Of FACT complex and oxidative stress response: a KEAP1/NRF2-dependent novel mechanism sustaining hepatocellular carcinoma progression[J]. Gut, 2020, 69(2): 195-196.

基金

Islet-1 诱导MSCs特化心肌细胞的电生理构建与能量代谢重塑调控

PDF(12087 KB)

Accesses

Citation

Detail

段落导航
相关文章

/