阿尔茨海默病患者静息态下脑局部活动的多指标分析

许琳 刘晓丽 陈争珍 闻彩云 李昌盛 李如画 陈黛茜 陈成春

解剖学报 ›› 2023, Vol. 54 ›› Issue (1) : 75-81.

PDF(4592 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(4592 KB)
解剖学报 ›› 2023, Vol. 54 ›› Issue (1) : 75-81. DOI: 10.16098/j.issn.0529-1356.2023.01.011
解剖学

阿尔茨海默病患者静息态下脑局部活动的多指标分析

  • 许琳1 刘晓丽1 陈争珍1 闻彩云2 李昌盛3 李如画1 陈黛茜4 陈成春1*
作者信息 +

Multi-index analysis of regional brain activity in patients with Alzheimer’s disease during resting state

  • XU  Lin LIU Xiao-li1  CHEN  Zheng-zhen1  WEN Cai-yun2  LI Chang-sheng3  LI Ru-hua1  CHEN  Dai-qian4  CHEN  Cheng-chun1*
Author information +
文章历史 +

摘要

目的 应用静息态功能磁共振(rs-fMRI)低频振幅(ALFF)、比率低频振幅(fALFF)和波动幅度百分比(PerAF)3种指标探究阿尔茨海默病(AD)患者脑部自发性神经活动特点。  方法 对36例AD患者和40例健康志愿者分别行静息态fMRI扫描,应用ALFF、fALFF和PerAF方法计算并对比两组脑区改变的差异。  结果 与正常对照组相比较,AD组在双侧尾状核、额内侧回、额上回、直回、前扣带回、嗅皮质,左侧额中回、额下回等区域mALFF值显著增高(P<0.05);在右侧颞中回、颞下回、枕下回、枕中回,双侧距状皮层、楔叶、舌回、枕上回、小脑蚓、楔前叶等区域mALFF值显著减低(P<0.05)。AD组在右侧颞下回、小脑前叶、梭状回,左侧额上回、额内侧回、额中回、额下回、直回、前扣带回等区域mfALFF值显著增高(P<0.05);在双侧舌回,左侧距状皮层、楔叶、枕上回、枕中回、小脑蚓等区域mfALFF值显著减低(P<0.05)。AD组在双侧直回、前扣带回、额内侧回,左侧额上回、尾状核、额中回、额下回、嗅皮质、脑岛等区域mPerAF值显著增高(P<0.05);在双侧距状皮层、楔叶、枕上回、舌回、楔前叶,左侧梭状回、枕下回,右侧顶上小叶、角回、颞中回、颞下回、枕中回等区域mPerAF值显著减低(P<0.05)。  结论 AD患者默认网络(DMN)和视觉网络存在异常脑活动特征,最显著的神经活动在前额叶皮层和视皮层区域。

Abstract

Objective To investigate the spontaneous neural activity in the brain of patients with Alzheimer’s disease (AD) used 3 indicators of resting state-functional magnetic resonance (rs-fMRI) amplitude of low frequency fluctuation (ALFF), fractional amplitude of low frequency fluctuation (fALFF) and percentage amplitude fluctuation (PerAF). MethodsTotally 36 clinically diagnosed AD patients and 40 healthy volunteers were scanned by fMRI in resting state respectively. ALFF, fALFF and PerAF were used to calculate and compare the changes of brain regions between the two groups.   Results Compared with the normal control group, mALFF value in AD group increased significantly in bilateral caudate nucleus, medial frontal gyrus, superior frontal gyrus, gyrus rectus, anterior cingulate gyrus, olfactive cortex, left middle frontal gyrus and inferior frontal gyrus (P<0.05). mALFF values decreased significantly in the right middle temporal gyrus, inferior temporal gyrus, inferior occipital gyrus, middle occipital gyrus, bilateral calcarine, cuneus, lingual gyrus, superior occipital gyrus,vermis, precuneus and other regions (P<0.05). In AD group, mfALFF value of right inferior temporal gyrus, anterior cerebellar lobe, fusiform gyrus, left superior frontal gyrus, medial frontal gyrus, middle frontal gyrus, inferior frontal gyrus, gyrus rectus and anterior cingulate gyrus increased significantly (P<0.05); mfALFF values decreased significantly in bilateral lingual gyrus, left calcarine, cuneus, superior occipital gyrus, middle occipital gyrus and vermis (P<0.05). In AD group, mPerAF value incr   eased significantly in bilateral gyrus rectus, anterior cingulate gyrus, medial frontal gyrus, left superior frontal gyrus, caudate nucleus, middle frontal gyrus, inferior frontal gyrus, olfactive cortex and insula (P<0.05); mPerAF values decreased significantly in bilateral calcarine, cuneus, superior occipital gyrus, lingual gyrus, precuneus, left fusiform gyrus, inferior occipital gyrus, right superior parietal lobule, angular gyrus, middle temporal gyrus, inferior temporal gyrus and middle occipital gyrus (P<0.05).   Conclusion The default mode network (DMN) and visual network of AD patients are characterized by abnormal brain activity, with the most significant neural activity in the prefrontal cortex and visual cortex.  

关键词

阿尔茨海默病 / 低频振幅 / 波动幅度百分比 / 比率低频振幅 / 静息态功能磁共振 /

Key words

Alzheimer’s disease
/ Amplitude of low frequency fluctuation / Fractional amplitude of low frequency fluctuation / Percentage amplitude fluctuation / Resting state-functional magnetic resonance / Human

引用本文

导出引用
许琳 刘晓丽 陈争珍 闻彩云 李昌盛 李如画 陈黛茜 陈成春. 阿尔茨海默病患者静息态下脑局部活动的多指标分析[J]. 解剖学报. 2023, 54(1): 75-81 https://doi.org/10.16098/j.issn.0529-1356.2023.01.011
XU Lin LIU Xiao-li CHEN Zheng-zhen WEN Cai-yun LI Chang-sheng LI Ru-hua CHEN Dai-qian CHEN Cheng-chun. Multi-index analysis of regional brain activity in patients with Alzheimer’s disease during resting state[J]. Acta Anatomica Sinica. 2023, 54(1): 75-81 https://doi.org/10.16098/j.issn.0529-1356.2023.01.011
中图分类号: R455.2   

参考文献

[1]Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease [J]. Lancet, 2006, 368(9533): 387-403.
[2]He Y, Wang L, Zang Y, et al. Regional coherence changes in the early stages of Alzheimer’s disease: a  combined structural and resting-state functional MRI study [J]. Neuroimage, 2007, 35(2): 488-500.
[3]Lees AJ. The relevance of the Lewy Body to the pathogenesis of idiopathic Parkinson’s disease: accuracy of clinical diagnosis of idiopathic Parkinson’s disease [J]. J Neurol Neurosurg Psychiatry, 2012, 83(10): 954-955.
[4]Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI [J].Magn Reson Med, 1995, 34(4):537-541.
[5]Zang YF, He Y, Zhu CZ, et al. Altered baseline brain activity in children with ADHD revealed by resting-state  functional MRI [J]. Brain Dev, 2007, 29(2): 83-91.
[6]Zou QH, Zhu CZ, Yang Y, et al. An improved approach to detection of amplitude of low-frequencyfluctuation  (ALFF) for resting-state fMRI: fractional ALFF [J]. J Neurosci Methods, 2008, 172(1): 137-141.
[7]Zuo XN, Di Martino A, Kelly C, et al. The oscillating brain: complex and reliable [J]. Neuroimage, 2010, 49(2): 1432-1445.
[8]Yan CG, Craddock RC, Zuo XN, et al. Standardizing the intrinsic brain: towards robust measurement of  inter-individual variation in 1000 functional connectomes [J]. Neuroimage, 2013, 80: 246-262.
[9]Jia XZ, Sun JW, Ji GJ, et al. Percent amplitude of fluctuation: a simple measure for resting-state fMRI signal at   single voxel level [J].PLoS One, 2020, 15(1): e0227021.
[10]Raichle ME, Macleod AM, Snyder AZ, et al. A default mode of brain function. [J]. Proc Natl Acad Sci USA,  2001, 98(2): 676-682.
[11]Zhang D, Raichle ME. Disease and the brain’s dark energy[J]. Nat Revs Neurol, 2010, 6(1):15-28.
[12]Cao JJ, Fan WJ, Shi ZhY, et al. Effect of amyloid beta-peptide25-35 neurotoxicity on cytoskeletons of PC12  cells[J]. Acta Anatomica Sinica, 2016, 47(4):469-475. (in Chinese)
曹静井,范文娟,石贞宇,等. β淀粉样蛋白25~35对 PC12 细胞骨架的毒性作用[J]. 解剖学报,2016,47(4):469-475.
[13]Greicius MD, Flores BH, Menon V, et al. Resting-state functional connectivity in major depression:  abnormally increased contributions from subgenual cingulate cortex and thalamus [J]. Biol Psychiatry, 2007, 62(5): 429-437.
[14]Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state  default mode of brain function hypothesis [J]. Hum Brain Mapp, 2005, 26(1): 15-29.
[15]Gould RL, Arroyo B, Brown RG, et al. Brain mechanisms of successful compensation during learning in  Alzheimer disease[J]. Neurology, 2006, 67(6):1011-1017.
[16]Buckner RL. Memory and executive function in aging and AD: Multiple factors that cause decline and reserve  factors that compensate[J].Neuron, 2004, 44(1):195-208.
[17]Saykin AJ, Flashman LA, Frutiger SA, et al. Neuroanatomic substrates of semantic memory impairment in  Alzheimer’s disease: Patterns of functional MRI activation [J]. J Int Neuropsychol Soc, 1999, 5(5):377-392.
[18]Grady CL, McIntosh AR, Beig S, et al. Evidence from functional neuroimaging of a compensatory prefrontal  network in Alzheimer’s disease[J]. J Neurosci, 2003, 23(3):986-993.
[19]Rizzo M, Anderson SW, Dawson J, et al. Vision and cognition in Alzheimer’s disease[J]. Neuropsychologia,  2000, 38(8) :1157-1169.
[20]Holler DE, Behrmann M, Snow JC. Real-world size coding of solid objects, but not 2-D or 3-D images, in  visual agnosia patients with bilateral ventral lesions. [J]. Cortex, 2019,119: 555-568.
[21]Bokde ALW, Lopez-Bayo P, Born C, et al. Alzheimer disease: functional abnormalities in the dorsal visual  pathway[J]. Radiology, 2010, 254(1):219-226.
[22]Fu CHY, Mourao-Miranda J, Costafrecla SG, et al. Pattern classification of sad facial processing: Toward the  development of neurobiological markers in depression[J]. Biol Psychiatry, 2008, 63(7): 656-662.
[23]Vannini P, Lehmann C, Dierks T, et al. Failure to modulate neural response to increased task demand in mild  Alzheimer’s disease: fMRI study of visuospatial processing[J]. Neurobiol Dis, 2008, 31(3): 287-297.
[24]Prvulovic D, Hubl D, Sack AT, et al. Functional imaging of visuospatial processing in Alzheimer’s disease[J].  NeuroImage, 2002, 17(3): 1403-1414.
[25]Graybiel A. The basal ganglia[J]. Curr Biol, 2000, 10(14): R509-R511.
[26]Gould RL, Brown RG, Owen AM, et al. Functional neuroanatomy of successful paired associate learning in  Alzheimer’s disease[J]. Am J Psychiatry, 2005, 162(11): 2049-2060.
[27]Bas O, Acer N, Mas N, et al. Stereological evaluation of the volume and volumefraction of intracranial  structures in magnetic resonance[J]. Ann Anat, 2009, 191(2): 186-195.
[28]Sjobeck M,Englund E. Alzheimer’s disease and the cerebellum:a morphologic study on neuronal and glial  changes[J]. Dement Geriatr Cogn Disord, 2001, 12(3): 211-218.
[29]Turner BM, Paradiso S, Marvel CL, et al. The cerebellum and emotional experience[J]. Neuropsychologia,  2007, 45(6): 1331-1341.

基金

成人大脑内静脉及其属支的 SWI 三维数字化构建;基于 SWI 显影深髓静脉形态改变对 TIA 患者发生缺血性脑卒中的预测价值研究;基于T2 mapping联合DTI技术的早期阿尔茨海默病内侧颞叶病变特征的研究

PDF(4592 KB)

Accesses

Citation

Detail

段落导航
相关文章

/