多疣壁虎断尾后脊髓再生过程中mRNA和微小RNA差异表达谱的分析

胡晓静 张明敏 吕广明

解剖学报 ›› 2023, Vol. 54 ›› Issue (1) : 6-12.

PDF(11766 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(11766 KB)
解剖学报 ›› 2023, Vol. 54 ›› Issue (1) : 6-12. DOI: 10.16098/j.issn.0529-1356.2023.01.001
神经生物学

多疣壁虎断尾后脊髓再生过程中mRNA和微小RNA差异表达谱的分析

  • 胡晓静 张明敏 吕广明*
作者信息 +

Preliminary analysis of mRNA and microRNA differential expression profiles in spinal cord regeneration of Gekko japonicus after tail amputation

  • HU Xiao-jing  ZHANG Ming-min  Lü Guang-ming*
Author information +
文章历史 +

摘要

目的 分析多疣壁虎断尾后脊髓再生过程中相关mRNA和微小RNA(miRNA)的表达变化,探讨差异表达的mRNA和miRNA在脊髓损伤再生过程中的生物学作用。  方法 构建多疣壁虎断尾模型,50只多疣壁虎分为正常组、断尾15d组和断尾25d组,每组5只实验重复3次,余5只备用。收集各组标本,提取各组RNA 并进行高通量测序。生物信息学分析鉴定组间差异表达的mRNA、miRNA,基因本体论(GO)富集分析差异表达的mRNA功能注释,构建脊髓再生相关的miRNA和mRNA基因调控网络。  结果 经测序分析多疣壁虎正常和新生脊髓中mRNA、miRNA的差异表达,断尾15d组和断尾25d组分别鉴定到538、510个差异mRNA表达和446、127个差异miRNA表达。GO分析发现,差异表达的mRNA聚集于与细胞增殖、神经发育相关的生物学过程。在脊髓再生相关miRNA及其靶基因调控网络中,断尾15d组有21个mRNA表达下调,被41个上调的miRNA负向调控;12个mRNA表达上调,受到29个下调的miRNA调控。在断尾25d组中,8个mRNA表达下调,被10个上调的miRNA负向调控;20个mRNA表达上调,受到32个下调的miRNA调控。  结论 通过对多疣壁虎再生脊髓中miRNA、mRNA差异表达分析,初步揭示了mRNA、miRNA在脊髓再生中表达变化的规律,为阐明脊髓再生的分子机制提供了实验数据。

Abstract

Objective To analyze the expression changes of related mRNA and microRNA(miRNA)during spinal cord regeneration after tail amputation of Gekko japonicus, and to explore the biological effects of differentially expressed mRNA and miRNA during spinal cord regeneration.   Methods Fifty Gekko japonicus, the tail amputation model of Gekko japonicus was constructed, divided into normal group, 15days tail amputation group, and 25days tail amputation group, 5 in each group, repeat the experiment 3 times, 5 spare. Samples of each group were collected, RNA of each group was extracted and high-throughput sequencing. Bioinformatics analysis identifies differentially expressed mRNA and miRNA between groups, Gene Ontology(GO) enrichment analysis of differentially expressed mRNA functional annotations, and construction of miRNA and mRNA gene regulatory networks related to spinal cord regeneration.   Results The differential expression of mRNA and miRNA in the normal and newborn spinal cords of Gekko japonicus was analyzed by sequencing. The 15days and 25days tail amputation groups identified 538 and 510 differential mRNA expressions and 446, 127 differential miRNA expressions, respectively. GO analysis found that the differentially expressed mRNA aggregated in biological processes related to cell proliferation and neurodevelopment. In the spinal cord regeneration-related miRNA and its target gene regulatory network, 21 mRNA expression was down-regulated in the 15days tail amputation group, which was regulated negatively by 41 up-regulated miRNAs; 12 mRNA expression was up-regulated and was regulated by 29 down-regulated miRNAs. In the 25days tail amputation group, 8 mRNA expression was down-regulated and regulated negatively by 10 up-regulated miRNAs; 20 mRNA expression was up-regulated and regulated by 32 down-regulated miRNAs.   Conclusion Through the analysis of the differential expression of miRNA and mRNA in the regenerated spinal cord of Gekko japonicus, the expression changes of mRNA and miRNA in spinal cord regeneration were initially revealed, which provided experimental data for elucidating the molecular mechanism of spinal cord regeneration.

关键词

脊髓再生 / 断尾 / 微小RNA / 高通量测序 / 多疣壁虎

Key words

Spinal cord regeneration / Tail amputation / MicroRNA / High-throughput sequencing / Gekko japonicus

引用本文

导出引用
胡晓静 张明敏 吕广明. 多疣壁虎断尾后脊髓再生过程中mRNA和微小RNA差异表达谱的分析[J]. 解剖学报. 2023, 54(1): 6-12 https://doi.org/10.16098/j.issn.0529-1356.2023.01.001
HU Xiao-jing ZHANG Ming-min Lü Guang-ming. Preliminary analysis of mRNA and microRNA differential expression profiles in spinal cord regeneration of Gekko japonicus after tail amputation[J]. Acta Anatomica Sinica. 2023, 54(1): 6-12 https://doi.org/10.16098/j.issn.0529-1356.2023.01.001
中图分类号: Q189   

参考文献

[1]Assinck P, Duncan GJ, Hilton BJ, et al. Cell transplantation therapy for spinal cord injury[J]. Nat Neurosci, 2017, 20(5):637-647.
[2]Londono R, Wenzhong W, Wang B, et al. Cartilage and muscle cell fate and origins during lizard tail regeneration[J]. Front Bioeng Biotechnol, 2017, 5:70.
[3]Kim DI, Park IK, Kim JS, et al. Spring and summer microhabitat use by Schlegel’s Japanese gecko, Gekko japonicus (Reptilia: Squamata: Gekkonidae), in urban areas[J]. Anim Cells Syst (Seoul), 2018,23(1):64-70.
[4]McLean KE, Vickaryous MK. A novel amniote model of epimorphic regeneration: the leopard gecko, Eublepharismacularius[J]. BMC Dev Biol, 2011,11:50.
[5]Wang H, Moyano AL, Ma Z, et al. miR-219 cooperates with miR-338 in myelination and promotes myelin repair in the CNS[J]. Dev Cell, 2017, 40(6):566-582.
[6]Liu XD, Wang YR, Lü JM, et al. Screening and verification of  glial activation associated microRNA  after corticospinal tract injury [J]. Acta Anatomica Sinica, 2018,49 (1): 14-19.(in Chinese)
刘晓东,王艺儒,吕金阳,等. 皮质脊髓束损伤后胶质细胞激活相关microRNA的筛选与验证[J]. 解剖学报,2018,49(1):14-19.
[7]Li P, Teng ZQ, Liu CM. Extrinsic and intrinsic regulation of axon regeneration by micrornas after spinal cord injury[J]. Neural Plast, 2016,2016:1279051.
[8]Xu M, Wang T, Li W, et al. PGE2 facilitates tail regeneration via activation of Wnt signaling in Gekko japonicus[J]. J Mol Histol, 2019, 50(6):551-562.
[9]Mahar M, Cavalli V. Intrinsic mechanisms of neuronal axon regeneration[J]. Nat Rev Neurosci, 2018, 19(6):323-337.
[10]Walker SE, Spencer GE, Necakov A, et al. Identification and characterization of microRNAs during Retinoic acid-induced regeneration of a molluscan central nervous system[J]. Int J Mol Sci, 2018,19(9):2741.
[11]Nowakowski TJ, Rani N, Golkaram M, et al Regulation of cell-type-specific transcriptomes by microRNA networks during human brain development[J]. Nat Neurosci, 2018,21(12):1784-1792.
[12]Williams AE. Functional aspects of animal microRNAs[J]. Cell Mol Life Sci, 2008, 65(4): 545-562.
[13]Properzi F, Logozzi M, Abdelhaq H, et al. Detection of exosomal prions in blood by immunochemistry techniques.[J]. Journal of General Virol, 2015, 96(7):1969-1974.
[14]Wang Y, Tan H, Hui X. Biomaterial scaffolds in regenerative therapy of the central nervous system[J]. Biomed Res Int, 2018, 2018:7848901.
[15]Von Leden RE, Yauger YJ, Khayrullina G, et al. Central nervous system injury and nicotinamide adenine dinucleotide phosphate oxidase: oxidative stress and therapeutic targets[J]. J Neurotrauma, 2017, 34(4):755-764.
[16]Wu CH, Tsai MH, Ho CC, et al. De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration[J]. BMC Genomics, 2013, 14: 434.
[17]Looso M, Preussner J, Sousounis K, et al. A de novo assembly of the newt transcriptome combined with proteomic validation identifies new protein families expressed during tissue regeneration[J]. Genome Biol, 2013, 14(2): R16.
[18]Rinkevich Y, Lindau P, Ueno H, et al. Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip[J]. Nature, 2011, 476(7361): 409-413.
[19]Reon BJ, Dutta A. Biological processes discovered by high-throughput sequencing[J]. Am J Pathol, 2016, 186(4):722-732.
[20]Salem M, Paneru B, Al-Tobasei R, et al. Transcriptome assembly gene annotation and tissue gene expression atlas of the rainbow trout[J]. PLoS One, 2015,10(3): e0121778.
[21]Dhanesh SB, Subashini C, James J. Hes1: the maestro in neurogenesis[J]. Cell Mol Life Sci, 2016, 73(21):4019-4042.
[22]Urbina FL, Gupton SL. SNARE-Mediated exocytosis in neuronal development[J]. Front Mol Neurosci, 2020,13:133.
[23]Tsang SM, Oliemuller E, Howard BA. Regulatory roles for SOX11 in development, stem cells and cancer[J]. Semin Cancer Biol, 2020,67(Pt 1):3-11.

PDF(11766 KB)

Accesses

Citation

Detail

段落导航
相关文章

/