基于癌症多组学数据库深度解析磷酸甘油激酶1在肝细胞癌中的表达及临床意义

管成剑 于华婧 张小东 饶全 张伟涛 刘坤 吴鸿伟 汪栋 张忠涛 郭伟

解剖学报 ›› 2022, Vol. 53 ›› Issue (6) : 744-753.

PDF(11059 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(11059 KB)
解剖学报 ›› 2022, Vol. 53 ›› Issue (6) : 744-753. DOI: 10.16098/j.issn.0529-1356.2022.06.008

基于癌症多组学数据库深度解析磷酸甘油激酶1在肝细胞癌中的表达及临床意义

  • 管成剑 于华婧 张小东 饶全 张伟涛 刘坤 吴鸿伟 汪栋 张忠涛 郭伟*
作者信息 +

Expression and clinical significance of phosphoglycerate kinase 1 in hepatocellular carcinoma based on bioinformatics methods

  • GUAN  Cheng-jian  YU  Hua-jing  ZHANG  Xiao-dong  RAO  Quan  ZHANG  Wei-tao  LIU  Kun  WU  Hong-wei  WANG  Dong  ZHANG  Zhong-tao  GUO  Wei*
Author information +
文章历史 +

摘要

目的 探讨磷酸甘油激酶1 (PGK1)在肝细胞癌(HCC)发生中的作用以及其潜在的蛋白质翻译后修饰位点,为PGK1作为肝癌诊断生物标志物和防控靶点提供依据。  方法 以泛癌的角度,从癌症基因组数据库TCGA中获取10 967份样本资料,利用cBioPortal和UALCAN肿瘤基因分析工具,探讨PGK1基因在不同肿瘤中的表达情况和预后改变,随后将目标聚焦在肝细胞癌中,分析PGK1在肝肿瘤组织和正常组织间的表达差异;从GEO数据库获取肝癌患者的样本数据,分析PGK1在诱发肝细胞癌发生发展中的潜在作用;同时,通过Real-time PCR、Western blotting实验等从mRNA、蛋白水平分析PGK1在肝细胞癌和癌旁组织中的表达差异,并进行细胞侵袭、增殖实验的功能验证;通过String数据库检索PGK1相关蛋白并进行功能富集分析;最后采用CSS-Palm数据库和生物信息学方法预测PGK1上的蛋白质翻译后修饰位点。  结果 PGK1基因在包括肝细胞癌在内的多种实体瘤中异常扩增和过度表达,且PGK1的高表达与肝细胞癌的不良预后相关。PGK1多个位点上存在多种新型表观遗传修饰位点。  结论 PGK1与包括肝癌在内的多种癌症的发生发展及糖酵解代谢异常密切相关,表观遗传修饰能够调控PGK1并影响其细胞功能。

Abstract

Objective To investigate the role of phosphoglycerate kinase 1 (PGK1) in tumorigenesis and its potential post-translational modification sites were investigated by bioinformatics method  and molecular biology experimental techniques, in order to provide evidence for PGK1 as a hepatocellular carcinoma(HCC) diagnostic biomarker and therapeutic target.   Methods From pan-cancer’s point of view, 10 967 samples were obtained from the cancer genome database TCGAs, and the expression of PGK1 in different tumors was explored by using cBioPortal and UALCAN analysis tools; Focusing on HCC, the expression differences of PGK1 in hepatocellular carcinoma tumor tissues and normal tissues were further analyzed by using GEO database analysis, Real-time PCR, Western blotting and cell invasion assay;The String database was used to analyze the protein-protein interaction network and gene set enrichment analysis; The CSS-Palm database and bioinformatics method  were used to predict protein post-translational modification sites on PGK1.   Results The PGK1 gene was abnormally amplified and overexpressed in various solid tumors, including hepatocellular carcinoma, and overexpression of PGK1 was correlated with a poor prognosis in hepatocellular carcinoma. Multiple novel post-translational modifications were existed on PGK1.   Conclusion PGK1 is closely related to the occurrence and development of various cancers including HCC and glycolytic metabolism abnormalities. Epigenetic modifications can regulate PGK1 and affect its cellular function in HCC.

关键词

磷酸甘油激酶1 / 癌症 / 肝细胞癌 / 生物信息学 / 糖酵解 / 预后 / 免疫印迹法 /

Key words

Phosphoglycerate kinase 1 / Cancer /   / Hepatocellular carcinoma /   / Bioinformatics /   / Glycolysis /   / Prognosis /   / Western blotting /   / Human  

引用本文

导出引用
管成剑 于华婧 张小东 饶全 张伟涛 刘坤 吴鸿伟 汪栋 张忠涛 郭伟. 基于癌症多组学数据库深度解析磷酸甘油激酶1在肝细胞癌中的表达及临床意义[J]. 解剖学报. 2022, 53(6): 744-753 https://doi.org/10.16098/j.issn.0529-1356.2022.06.008
GUAN Cheng-jian YU Hua-jing ZHANG Xiao-dong RAO Quan ZHANG Wei-tao LIU Kun WU Hong-wei WANG Dong ZHANG Zhong-tao GUO Wei. Expression and clinical significance of phosphoglycerate kinase 1 in hepatocellular carcinoma based on bioinformatics methods[J]. Acta Anatomica Sinica. 2022, 53(6): 744-753 https://doi.org/10.16098/j.issn.0529-1356.2022.06.008
中图分类号: R735.7   

参考文献

[1]Villanueva A. Hepatocellular carcinoma [J]. N Engl J Med, 2019, 380(15): 1450-1462.
[2]ForNer A, Reig M, Bruix J. Hepatocellular carcinoma [J]. Lancet, 2018, 391(10127): 1301-1314.
[3]Lu HX, Wei DM, Feng ZhB, et al. Expression and clinical significance of EZH2 in hepatocellular carcinoma [J]. Acta Anatomica Sinica, 2011, 42(1):75-79. (in Chinese)
陆海霞, 危丹明, 冯震博,等. EZH2在肝细胞癌中的表达及临床意义 [J].解剖学报,2011, 42(1): 75-79.
[4]Chen W. Cancer statistics: updated cancer burden in China [J]. Chin J Cancer Res, 2015, 27(1): 1.
[5]Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma [J]. Nat Rev Dis Primers, 2021, 7(1): 6.
[6]Schulze K, Imbeaud S, Letouze E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets [J]. Nat Genet, 2015, 47(5): 505-511.
[7]Bayo J, Fiore EJ, Dominguez LM, et al. A comprehensive study of epigenetic alterations in hepatocellular carcinoma identifies potential therapeutic targets [J]. J Hepatol, 2019, 71(1): 78-90.
[8]Gao Q, Zhu H, Dong L, et al. Integrated Proteogenomic Characterization of HBV-Related Hepatocellular Carcinoma [J]. Cell, 2019, 179(2): 561-577.
[9]Li X, Jiang Y, Meisenhelder J, et al. Mitochondria-translocated PGK1 functions as a protein kinase to coordinate glycolysis and the TCA cycle in tumorigenesis [J]. Mol Cell, 2016, 61(5): 705-719.
[10]Liang C, Shi S, Qin Y, et al. Localisation of PGK1 determines metabolic phenotype to balance metastasis and proliferation in patients with SMAD4-negative pancreatic cancer [J]. Gut, 2020, 69(5): 888-900.
[11]Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal [J]. Sci Signal, 2013, 6(269): pl1.
[12]Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses [J]. Neoplasia, 2017, 19(8): 649-658.
[13]Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets [J]. Nucleic Acids Res, 2019, 47(D1): D607-D613.
[14]Ren J, Wen L, Gao X, et al. CSS-Palm 2.0: an updated software for palmitoylation sites prediction [J]. Protein Eng Des Sel, 2008, 21(11): 639-644.
[15]Sonnhammer EL, Eddy SR, Durbin R. Pfam: a comprehensive database of protein domain families based on seed alignments [J]. Proteins, 1997, 28(3): 405-420.
[16]Schultz J, Milpetz F, Bork P, et al. SMART, a simple modular architecture research tool: identification of signaling domains [J]. Proc Natl Acad Sci USA, 1998, 95(11): 5857-5864.
[17]HU H, Zhu W, Qin J, et al. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis [J]. Hepatology, 2017, 65(2): 515-528.
[18]Nie H, Ju H, Fan J, et al. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth [J]. Nat Commun, 2020, 11(1): 36.
[19]Hoekema A, Kastelein RA, Vasser M, et al. Codon replacement in the PGK1 gene of Saccharomyces cerevisiae: experimental approach to study the role of biased codon usage in gene expression [J]. Mol Cell Biol, 1987, 7(8): 2914-2924.
[20]Hansen RS, Gartler SM. 5-Azacytidine-induced reactivation of the human X chromosome-linked PGK1 gene is associated with a large region of cytosine demethylation in the 5’ CpG island [J]. Proc Natl Acad Sci USA, 1990, 87(11): 4174-4178.
[21]Gao S, Drouin R, Holmquist GP. DNA repair rates mapped along the human PGK1 gene at nucleotide resolution [J]. Science, 1994, 263(5152): 1438-1440.
[22]Tan MJ, Luo H, Lee S, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification [J]. Cell, 2011, 146(6): 1015-1027.
[23]Qian X, Li X, Shi Z, et al. PTEN suppresses glycolysis by dephosphorylating and inhibiting autophosphorylated PGK1 [J]. Mol Cell, 2019, 76(3): 516-527.

基金

ZBTB16-MTA2/NuRD复合体抑制肝细胞肝癌侵袭与转移的分子机制

PDF(11059 KB)

Accesses

Citation

Detail

段落导航
相关文章

/