微小RNA-486靶向TRIM10抑制帕金森病细胞模型损伤

廖建云 江新柳 谢为法

解剖学报 ›› 2022, Vol. 53 ›› Issue (4) : 424-431.

PDF(7709 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(7709 KB)
解剖学报 ›› 2022, Vol. 53 ›› Issue (4) : 424-431. DOI: 10.16098/j.issn.0529-1356.2022.04.004
神经生物学

微小RNA-486靶向TRIM10抑制帕金森病细胞模型损伤

  • 廖建云* 江新柳 谢为法
作者信息 +

MicroRNA-486 targeting TRIM10 to inhibit Parkinson’s disease cell model damage

  • LIAO  Jian-yun*  JIANG  Xin-liu XIE  Wei-fa
Author information +
文章历史 +

摘要

目的  探讨微小RNA(miR)-486对1-甲基-4-苯基吡啶离子(MPP+)诱导的体外帕金森病(PD)PC12细胞模型凋亡的影响和机制。   方法  实验分成对照(control)组、PD组(MPP+诱导PC12细胞)、miR-NC组[MPP+诱导PC12细胞转染模拟(mimics)对照(mimics control)]、miR-486组(MPP+诱导PC12细胞转染miR-486 mimics)、miR-486+载体(vector)组(共转染miR-486 mimics和pcDNA3.1)、miR-486+TRIM10组(共转染miR-486 mimics和pcDNA3.1-TRIM10),每组n=9。CCK-8法分析细胞增殖变化,流式细胞术分析细胞凋亡水平变化,Western blotting分析Bax和Bcl-2蛋白表达变化,硫代巴比妥酸法检测细胞中丙二醛(MDA)含量,荧光探针法检测细胞中活性氧簇(ROS)水平,二硝基苯肼分析培养液上清中乳酸脱氢酶(LDH)水平。用生物信息学软件预测miR-486的靶基因,双荧光素酶报告基因实验检测miR-486、TRIM10靶向关系。   结果  与control组比较,PD组细胞存活率、Bcl-2蛋白表达降低,细胞凋亡率、Bax蛋白表达、MDA、ROS和LDH水平升高。与miR-NC组比,miR-486组细胞存活率、Bcl-2蛋白表达升高,细胞凋亡率、Bax蛋白表达、MDA、ROS和LDH水平降低。MiR-486靶向下调TRIM10表达。与miR-486+vector组比较,miR-486+TRIM10组细胞存活率、Bcl-2蛋白水平降低,细胞凋亡率、Bax蛋白水平、MDA、ROS和LDH水平升高。   结论  上调miR-486可通过靶向抑制TRIM10减少MPP+诱导的体外帕金森病PC12细胞模型的凋亡。 

Abstract

Objective  To study the effect and mechanism of microRNA-486(miR-486) on 1-methyl-4-phenylpyridine (MPP+)-induced apoptosis of Parkinson’s disease (PD) PC12 cells in vitro.    Methods The experiment was divided into control group, PD (MPP+ induced PC12 cells), miR-NC (transfected mimics control, MPP+ induced PC12 cells), miR-486 group (transfected miR-486 mimics, MPP+ induced PC12 cells), miR-486+vector group (co-transfected miR-486 mimics, pcDNA3.1), miR-486+TRIM10 group (co-transfected miR-486 mimics, pcDNA3.1-TRIM10),n=9 each group. CCK-8 method  was used to analyze cell proliferation changes, flow cytometry was used to analyze cell apoptosis levels, Western blotting was used to analyze changes in Bax and Bcl-2 protein expression, thiobarbituric acid method  was used to detect malondialdehyde (MDA) content in cells, fluorescence probe method  was used to detect the level of reactive oxygen species (ROS) in the cells, and 2, 4-dinitrophenylhydrazine was used to analyze the level of lactate dehydrogenase (LDH) in the culture supernatant. Bioinformatics software was used to predict the target genes of miR-486, and the detection of targeting relationship between imiR-486 and TRIM 10 by dual luciferase reporter gene assay.   Results  Compared with the control group, the cell survival rate and Bcl-2 protein expression in the PD group decreased, while the apoptosis rate, Bax protein expression, MDA, ROS and LDH levels increased. Compared with the miR-NC group, the cell survival rate and Bcl-2 protein expression in the miR-486 group were increased, and the apoptosis rate, Bax protein expression, MDA, ROS and LDH levels were decreased. MiR-486 targeted down-regulation of TRIM10 expression. Compared with the miR-486+vector group, the miR-486+TRIM10 group decreased the cell survival rate and Bcl-2 protein level, while the apoptosis rate, Bax protein level, MDA, ROS and LDH levels increased.  Conclusion  Up-regulation of miR-486 targeted and inhibited TRIM10 to reduce MPP+induced apoptosis in in vitro Parkinson’s PC12 cell models.

关键词

微小RNA-486 / TRIM10 / 帕金森病 / 免疫印迹法 / PC12细胞

Key words

MicroRNA-486 / TRIM10 / Parkinson’s disease / Western blotting / PC12 cell

引用本文

导出引用
廖建云 江新柳 谢为法. 微小RNA-486靶向TRIM10抑制帕金森病细胞模型损伤[J]. 解剖学报. 2022, 53(4): 424-431 https://doi.org/10.16098/j.issn.0529-1356.2022.04.004
LIAO Jian-yun JIANG Xin-liu XIE Wei-fa. MicroRNA-486 targeting TRIM10 to inhibit Parkinson’s disease cell model damage[J]. Acta Anatomica Sinica. 2022, 53(4): 424-431 https://doi.org/10.16098/j.issn.0529-1356.2022.04.004
中图分类号: R741.02    

参考文献

[1]Foltynie T. Glycolysis as a therapeutic target for Parkinson’s disease [J]. Lancet Neurol, 2019, 18(12):1072-1074.

[2]Müller MLTM, Marusic U, van Emde Boas M, et al. Treatment options for postural instability and gait difficulties in Parkinson’s disease [J]. Expert Rev Neurother, 2019, 19(12):1229-1251.

[3]Peng LH, Sun CN, Guan NN, et al. HNMDA: heterogeneous network-based miRNA-disease association prediction [J]. Mol Genet Genomics, 2018, 293(4):983-995.
[4]Lu Q, Wu R, Zhao M, et al. miRNAs as therapeutic targets in inflammatory disease[J]. Trends Pharmacol Sci, 2019,40(11):853-865.
[5]Wu DM, Wang S, Wen X, et al. Suppression of microRNA-342-3p increases glutamate transporters and prevents dopaminergic neuron loss through activating the Wnt signaling pathway via p21-activated kinase 1 in mice with Parkinson’s disease [J]. J Cell Physiol, 2019, 234(6):9033-9044.
[6]Wang Y, Cai Y, Huang H, et al. miR-486-3p Influences the neurotoxicity of a-synuclein by targeting the SIRT2 gene and the polymorphisms at target sites contributing to Parkinson’s disease[J]. Cell Physiol Biochem, 2018, 51(6):2732-2745.
[7]Li ShZ. Research on the mechanism of microRNA-7 inhibiting MPP+-induced apoptosis in Parkinson’s cell model through Bax and sirt2[D]. Zhengzhou :Zhengzhou University, 2016.(in Chinese)
李世泽. MicroRNA-7通过Bax和sirt2抑制MPP+诱导的帕金森细胞模型凋亡机制研究[D].郑州:郑州大学,2016.
[8]Blaybel R, Théoleyre O, Douablin A, et al. Downregulation of the Spi-1/PU.1 oncogene induces the expression of TRIM10/HERF1, a key factor required for terminal erythroid cell differentiation and survival [J]. Cell Res, 2008,18(8):834-845.
[9]Huang Q, Zhu X, Xu M. Silencing of TRIM10 alleviates apoptosis in cellular model of Parkinson’s disease [J]. Biochem Biophys Res Commun, 2019,518(3):451-458.
[10] Han QQ, Wang GQ, Gu XF. Detection of intestinal microbial changes in rotenoneinduced Parkinson’s disease model mice[J].Acta Anatomica Sinica,2020,51(4):507-512. (in Chinese)
韩秋琴,万国庆,顾雪锋.鱼藤酮诱导帕金森病模型小鼠体内肠道微生物的变化[J].解剖学报,2020,51(4):507-512.
 [11]Shao QH, Chen Y, Li FF, et al. TLR4 deficiency has a protective effect in the MPTP/probenecid mouse model of Parkinson’s disease [J]. Acta Pharmacol Sin, 2019, 40(12):1503-1512.
 [12]Li T, Zhang W, Kang X, et al. Salidroside protects dopaminergic neurons by regulating the mitochondrial MEF2D-ND6 pathway in the MPTP/MPP+ -induced model of Parkinson’s disease[J]. J Neurochem, 2020,153(2):276-289.
 [13]Cantelmo RA, Dos Santos NAG, Dos Santos AC, et al. Dual effects of S-adenosyl-methyonine on PC12 cells exposed to the dopaminergic neurotoxin MPP [J]. J Pharm Pharmacol, 2020, 72(10):1427-1435.
 [14]Ba RQ, Liu J, Fan XJ, et al. Effects of miR-199a on autophagy by targeting glycogen synthase kinase 3β to activate PTEN/AKT/mTOR signaling in an MPP+in vitro model of Parkinson’s disease[J]. Neurol Res, 2020, 42(4):308-318.
 [15]Zheng M, Liu C, Fan Y, et al. Protective effects of paeoniflorin against MPP(+)-induced neurotoxicity in PC12 cells[J]. Neurochem Res, 2016,41(6):1323-1334.
 [16]Choi YH. Isorhamnetin induces ROS-dependent cycle arrest at G2/M phase and apoptosis in human hepatocarcinoma Hep3B cells [J]. Gen Physiol Biophys, 2019,38(6):473-484.
 [17]Wang BW, Jiang Y, Yao ZL, et al. Aucubin protects chondrocytes against IL-1β-induced apoptosis in vitro and inhibits osteoarthritis in mice model [J]. Drug Des Devel Ther, 2019, 13(9):3529-3538.
 [18]Bofill-De Ros X, Yang A, Gu S. Isomirs: expanding the miRNA repression toolbox beyond the seed [J]. Biochim Biophys Acta Gene Regul Mech, 2020, 1863(4):194373-194383.
[19]Zhang J, Zhou D, Zhang Z, et al. miR-let-7a suppresses α-synuclein-induced microglia inflammation through targeting STAT3 in Parkinson’s disease [J]. Biochem Biophys Res Commun, 2019, 519(4):740-746.
 [20]Liu Y, Chen D, Hou CL, et al. Ubiquitin E3 ligase TRIM10 aggravates myocardial hypoxia/reoxygenation injury through JNK/P38MAPK signaling pathway[J].Journal of Cardiovascular and Pulmonary Diseases, 2019,38(5):566-572.(in Chinese)
刘洋,陈东,侯翠柳,等. 泛素E3连接酶TRIM10在心肌细胞缺氧/复氧损伤的作用及机制[J].心肺血管病杂志,2019,38(5):566-572.

PDF(7709 KB)

Accesses

Citation

Detail

段落导航
相关文章

/