丘脑室旁核形态和功能研究进展

李佳妮 李辉 董玉琳 李云庆

解剖学报 ›› 2022, Vol. 53 ›› Issue (3) : 402-406.

PDF(1531 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(1531 KB)
解剖学报 ›› 2022, Vol. 53 ›› Issue (3) : 402-406. DOI: 10.16098/j.issn.0529-1356.2022.03.020
综述

丘脑室旁核形态和功能研究进展

  • 李佳妮 李辉 董玉琳 李云庆*
作者信息 +

Advances in morphological and functional studies on the paraventricular thalamic nucleus

  • LI  Jia-ni  LI  Hui  DONG  Yu-lin  LI  Yun-qing*
Author information +
文章历史 +

摘要

丘脑室旁核(PVT)为丘脑中线核团的重要组成部分,是多种行为的中继传导核团及整合中心,参与动物觉醒、摄食、成瘾、奖赏、恐惧记忆等多种行为的调节。PVT内主要分布着表达囊泡谷氨酸转运体-2(VGluT2)的谷氨酸能兴奋性神经元,却无γ-氨基丁酸(GABA)能抑制性神经元。基于PVT的复杂功能与其内神经元相对单一的兴奋性属性,有必要对PVT内兴奋性神经元进行分类。在本综述中,我们主要对PVT的形态及电生理特点、传入和传出联系、前后两段的形态和功能差异进行总结,并以纤维联系和神经化学性质作为分类标准对PVT的兴奋性神经元进行分类,以便为阐明PVT的复杂功能提供帮助。

Abstract

Paraventricular thalamic nucleus(PVT)is an essential component of the midline thalamus, which has been regarded as a transmit relay nucleus and an integrated center in multiple behaviors including wakefulness, food intake, addiction, reward and fear memory. PVT is predominantly populated with glutaminergic excitatory neurons expressing vesicular glutamate transporter-2 (VGluT2) but without GABAergic inhibitory neurons. Therefore, based on the paradox of its multiplexed roles in different behaviors and its comparatively simplex excitatory nature, more specific subclassification of excitatory PVT neurons is required in studies in this field. In the present review, morphological and electrophysiological characteristics, efferent and afferent connections, and morphological and functional distinctions in anterior subregion and posterior subregion of PVT are summarized. In addition, neural connections and neurochemical properties are used as subclassification criteria in PVT neurons. This review might explain the integrated role of PVT in different behaviors, which would be helpful for further studies on the PVT. 

关键词

丘脑室旁核 / 囊泡谷氨酸转运体-2 / 传入联系 / 传出联系 / 神经元分类

Key words

Paraventricular thalamic nucleus / Vesicular glutamate transporter-2 / Afferent connection / Efferent connection / Neuron subclassification

引用本文

导出引用
李佳妮 李辉 董玉琳 李云庆. 丘脑室旁核形态和功能研究进展[J]. 解剖学报. 2022, 53(3): 402-406 https://doi.org/10.16098/j.issn.0529-1356.2022.03.020
LI Jia-ni LI Hui DONG Yu-lin LI Yun-qing. Advances in morphological and functional studies on the paraventricular thalamic nucleus[J]. Acta Anatomica Sinica. 2022, 53(3): 402-406 https://doi.org/10.16098/j.issn.0529-1356.2022.03.020
中图分类号:      R338.2   

参考文献

[1]Vertes RP, Linley SB, Hoover WB. Limbic circuitry of the midline thalamus [J]. Neurosci Biobehav Rev, 2015, 54:89-107.
[2]Keyes PC, Adams EL, Chen Z, et al. Orchestrating opiate-associated memories in thalamic circuits [J]. Neuron, 2020, 107(6):1113-1123.
[3]Otis JM, Zhu M, Namboodiri V, et al. Paraventricular thalamus projection neurons integrate cortical and hypothalamic signals for cue-reward processing [J]. Neuron, 2019, 103(3):423-431.
[4]Fraser KM, Janak PH. Stressing the other paraventricular nucleus [J]. Nat Neurosci, 2018, 21(7):901-902.
[5]Mátyás F, Komlósi G, Babiczky , et al. A highly collateralized thalamic cell type with arousal-predicting activity serves as a key hub for graded state transitions in the forebrain [J]. Nat Neurosci, 2018, 21(11):1551-1562.
[6]Colavito V, Tesoriero C, Wirtu AT, et al. Limbic thalamus and state-dependent behavior: the paraventricular nucleus of the thalamic midline as a node in circadian timing and sleep/wake-regulatory networks [J]. Neurosci Biobehav Rev, 2015, 54:3-17.
[7]Kirouac GJ. Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior [J]. Neurosci Biobehav Rev, 2015, 56:315-329.
[8]Ren S, Wang Y, Yue F, et al. The paraventricular thalamus is a critical thalamic area for wakefulness [J]. Science, 2018, 362(6413):429-434.
[9]Zhou K, Zhu Y. The paraventricular thalamic nucleus: a key hub of neural circuits underlying drug addiction [J]. Pharmacol Res, 2019, 142:70-76.
[10]Gao C, Leng Y, Ma J, et al. Two genetically, anatomically and functionally distinct cell types segregate across anteroposterior axis of paraventricular thalamus [J]. Nat Neurosci, 2020, 23(2):217-228.
[11]Richter TA, Kolaj M, Renaud LP. Low voltage-activated Ca2+ channels are coupled to Ca2+ -induced Ca2+ release in rat thalamic midline neurons [J]. J Neurosci, 2005, 25(36):8267-8271.
[12]Moutsimilli L, Farley S, El KM, et al. Antipsychotics increase vesicular glutamate transporter 2 (VGLUT2) expression in thalamolimbic pathways [J]. Neuropharmacology, 2008, 54(3):497-508.
[13]Kolaj M, Zhang L, Hermes ML, et al. Intrinsic properties and neuropharmacology of midline paraventricular thalamic nucleus neurons [J]. Front Behav Neurosci, 2014, 8:132.
[14]Yeoh JW, James MH, Graham BA, et al. Electrophysiological characteristics of paraventricular thalamic (PVT) neurons in response to cocaine and cocaine- and amphetamine-regulated transcript (CART) [J]. Front Behav Neurosci, 2014, 8:280.
[15]Li Y, Dong X, Li S, et al. Lesions of the posterior paraventricular nucleus of the thalamus attenuate fear expression [J]. Front Behav Neurosci, 2014, 8:94.
[16]Zhang X, van den Pol AN. Rapid binge-like eating and body weight gain driven by zona incerta GABA neuron activation [J]. Science, 2017, 356(6340):853-859.
[17]Lee JS, Lee EY, Lee HS. Hypothalamic, feeding/arousal-related peptidergic projections to the paraventricular thalamic nucleus in the rat [J]. Brain Res, 2015, 1598:97-113.
[18]Otis JM, Namboodiri VMK, Matan AM, et al. Prefrontal cortex output circuits guide reward seeking through divergent cue encoding [J]. Nature, 2017, 543(7643):103-107.
[19]Dong X, Li S, Kirouac GJ. Collateralization of projections from the paraventricular nucleus of the thalamus to the nucleus accumbens, bed nucleus of the stria terminalis, and central nucleus of the amygdala [J]. Brain Struct Funct, 2017, 222(9):3927-943.
[20]Unzai T, Kuramoto E, Kaneko T, et al. Quantitative analyses of the projection of individual neurons from the midline thalamic nuclei to the striosome and matrix compartments of the rat striatum [J]. Cereb Cortex, 2017, 27(2):1164-1181.
[21]Parsons MP, Li S, Kirouac GJ. The paraventricular nucleus of the thalamus as an interface between the orexin and CART peptides and the shell of the nucleus accumbens [J]. Synapse, 2006, 59(8):480-490.
[22]Do-Monte FH, Minier-Toribio A, Qui?ones-Laracuente K, et al. Thalamic regulation of sucrose seeking during unexpected reward omission [J]. Neuron, 2017, 94(2):388-400.
[23]Jurik A, Auffenberg E, Klein S, et al. Roles of prefrontal cortex and paraventricular thalamus in affective and mechanical components of visceral nociception [J]. Pain, 2015, 156(12):2479-2491.
[24]Li S, Kirouac GJ. Sources of inputs to the anterior and posterior aspects of the paraventricular nucleus of the thalamus [J]. Brain Struct Funct, 2012, 217(2):257-273.
[25]Li S, Kirouac GJ. Projections from the paraventricular nucleus of the thalamus to the forebrain, with special emphasis on the extended amygdala [J]. J Comp Neurol, 2008, 506(2):263-287.
[26]Flagel SB, Cameron CM, Pickup KN, et al. A food predictive cue must be attributed with incentive salience for it to induce c-fos mRNA expression in cortico-striatal-thalamic brain regions [J]. Neuroscience, 2011, 196:80-96.
[27]Timofeeva E, Richard D. Activation of the central nervous system in obese Zucker rats during food deprivation [J]. J Comp Neurol, 2001, 441(1):71-89.
[28]Choi EA, Jean-Richard-Dit-Bressel P, Clifford C, et al. Paraventricular thalamus controls behavior during motivational conflict [J]. J Neurosci, 2019, 39(25):4945-4958.
[29]Hsu DT, Kirouac GJ, Zubieta JK, et al. Contributions of the paraventricular thalamic nucleus in the regulation of stress, motivation, and mood [J]. Front Behav Neurosci, 2014, 8:73.
[30]Hua R, Wang X, Chen X, et al. Calretinin neurons in the midline thalamus modulate starvation-induced arousal [J]. Curr Biol, 2018, 28(24):3948-3959.
[31]Ong ZY, Liu J, Pang ZP, et al. Paraventricular thalamic control of food intake and reward: role of glucagon-like peptide-1 receptor signaling [J]. Neuropsychopharmacology, 2017, 42(12):2387-2397.
[32]Hikida T, Morita M, Macpherson T. Neural mechanisms of the nucleus accumbens circuit in reward and aversive learning [J]. Neurosci Res, 2016, 108:1-5.
[33]Labouèbe G, Boutrel B, Tarussio D, et al. Glucose-responsive neurons of the paraventricular thalamus control sucrose-seeking behavior [J]. Nat Neurosci, 2016, 19(8):999-1002.
[34]Clark AM, Leroy F, Martyniuk KM, et al. Dopamine D2 receptors in the paraventricular thalamus attenuate cocaine locomotor sensitization [J]. eNeuro, 2017, 4(5):217-227.

基金

痒觉信息在脊髓以上中枢传递和调控的环路及其机制研究

PDF(1531 KB)

Accesses

Citation

Detail

段落导航
相关文章

/