基于完全融合集成网络候选框的肋骨骨折检测方法

何学才 金倞 李铭 章琛曦

解剖学报 ›› 2022, Vol. 53 ›› Issue (3) : 396-401.

PDF(1607 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(1607 KB)
解剖学报 ›› 2022, Vol. 53 ›› Issue (3) : 396-401. DOI: 10.16098/j.issn.0529-1356.2022.03.019
技术方法

基于完全融合集成网络候选框的肋骨骨折检测方法

  • 何学才1,2 金倞3 李铭3* 章琛曦1,2*
作者信息 +

Complete Box Fusion based on Ensemble Networks for rib fracture detection and localization

  • HE  Xue-cai1,2  JIN  Liang3  LI  Ming3*  ZHANG Chen-xi1,2*
Author information +
文章历史 +

摘要

目的 提出一种新型的肋骨骨折检测网络Rib-Net,探讨其进行肋骨骨折检测的可行性与准确性,以减少骨折漏诊案例。  方法 采用公开数据集RibFrac Dataset,其数据集划分为训练集(420例)、验证集(80例)及测试集(160例)。Rib-Net由目标检测集成网络ED-Net、完全候选框融合算法(CBF)与分割模型3D Unet构成。首先,集成Retina Unet、UFRCNN+与Mask RCNN组成ED-Net,预测肋骨骨折候选框;其次,设计全新的CBF,融合存在重叠的骨折候选框,生成定位精准、置信度准确的候选框;最后,利用Unet对肋骨骨折进行分割,实现肋骨骨折的进一步精确定位。  结果 在“MICCAI 2020 RibFrac Challenge: Rib Fracture Detection and Classification”挑战赛平台上,Rib-Net检测结果达到了最优成绩,其召回率、无限制接受者操作特性曲线(FROC)值及Dice相似指数分别为92.3%,0.859和0.61。  结论 Rib-Net网络可高效精准地对胸部CT影像进行肋骨骨折检测定位,有效协助医生做出准确诊断。

Abstract

Objective  To propose a new rib fracture detection network Rib-Net to automatically and accurately detect and locate rib fracture and address the issue of missed diagnosis of rib fractures.   Methods  The public data set RibFrac Dataset was used to evaluate the performance of the Rib-Net, and the data set was divided into training set (420 cases), validation set (80 cases), and test set (160 cases). The Rib-Net was composed of the object detection integrated network Ensemble Detection Net (ED-Ne), Complete Box Fusion (CBF) module and the segmentation network 3D Unet. Firstly, Retina Unet, UFRCNN+ and Mask RCNN were integrated to form ED-Net to predict rib fracture candidate boxes. Secondly, a new CBF module was designed to fuse overlapping fracture candidate boxes to generate candidate boxes with accurate positioning and accurate confidence. Finally, Unet was used for rib fracture segmentation to achieve further precise localization of rib fractures.   Results  On the “MICCAI 2020 RibFrac Challenge: Rib Fracture Detection and Classification challenge”, our proposed Rib-Net’s detection results  reached the best performance, and its recall rate, free-response  receiver operating characteristic curve(FROC) value and Dice were 92.3%, 0.859 and 0.61, respectively.   Conclusion  The Rib-Net network can efficiently and accurately detect and locate rib fractures on chest CT images, effectively assisting doctors in making accurate diagnosis. 

关键词

深度学习 / 肋骨 / 骨折 / 目标检测 / 集成检测网络 / 完全框融合 / 分割 / 算法 /

Key words

Deep learning / Rib / Fracture / Object detection / Ensemble Detection Net / Complete Box Fusion / Segmentation / Algorithm / Human

引用本文

导出引用
何学才 金倞 李铭 章琛曦. 基于完全融合集成网络候选框的肋骨骨折检测方法[J]. 解剖学报. 2022, 53(3): 396-401 https://doi.org/10.16098/j.issn.0529-1356.2022.03.019
HE Xue-cai JIN Liang LI Ming ZHANG Chen-xi. Complete Box Fusion based on Ensemble Networks for rib fracture detection and localization[J]. Acta Anatomica Sinica. 2022, 53(3): 396-401 https://doi.org/10.16098/j.issn.0529-1356.2022.03.019
中图分类号: TP391   

参考文献

[1]van Laarhoven JJEM, Hietbrink F, Ferree S, et al. Associated thoracic injury in patients with a clavicle fracture: a retrospective analysis of 1461 polytrauma patients[J]. Eur J Trauma and Emerg Surg, 2019,45(1): 59-63.
[2]Hu J, Zheng F, Wang SH, et al. Missed rib fractures on initial chest CT in trauma patients: time patterns, clinical and forensic significance[J]. Eur Radiol, 2021,31(4): 2332-2339.
[3]Khung S, Masset P, Duhamel A, et al. Automated 3D Rendering of Ribs in 110 Polytrauma Patients: Strengths and Limitations[J]. Acad Radiol, 2017,24(2): 146-152.
[4]Ke J, Lv Y, Du YL, et al. Automatic segmentation of facial nerve, labyrinthine and ossicles in temporal CT by deep learning[J]. Acta Anatomica Sinica, 2020,51(5): 653-658. (in Chinese)
柯嘉, 吕弈, 杜雅丽, 等.颞骨CT内面神经、迷路、听骨结构深度学习的自动化分割方法[J]. 解剖学报, 2020,51(5): 653-658.
[5]Weikert T, Noordtzij LA, Bremerich J, et al. Assessment of a deep learning algorithm for the detection of rib fractures on whole-body trauma computed tomography[J]. Korean J Radiol, 2020,21(7): 891-899.
[6]Ren SQ, He KM, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2017,39(6): 1137-1149.
[7]Chen M, Du P, Zhao JY. SCRFD: Spatial coherence based Rib fracture detection[C]. Okinawa: 5th International Conference on Biomedical and Bioinformatics Engineering, 2018.
[8]Jin L, Yang JC, Kuang KM, et al. Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet[J]. Ebiomedicine, 2020,62: 103106.
[9]Lin TY, Goyal P, Girshick R, et al. Focal loss for dense object detection[J]. IEEE Trans Pattern Anal Mach Intell, 2020,42(2): 318-327.
[10]Lin TY, Dollar P, Girshick R, et al. Feature pyramid networks for object detection[C]. Honolulu: IEEE Conference on Computer Vision and Pattern Recognition, 2017.
[11]He KM, Gkioxari G, Dollar P, et al. Mask R-CNN[C]. Venice: IEEE International Conference on Computer Vision, 2017.
[12]Solovyev R, Wang WM, Gabruseva T. Weighted boxes fusion: Ensembling boxes from different object detection models[J]. Image Vision Comput, 2021:104117.
[13]Salehi SSM, Erdogmus D, Gholipour A. Tversky loss function for image segmentation using 3D fully convolutional deep networks[C]. Quebec City: International Workshop on Machine Learning in Medical Imaging, 2017.
[14]Jolivet E, Sandoz B, Laporte S, et al. Fast 3D reconstruction of the rib cage from biplanar radiographs[J]. Med Biol Eng Comput, 2010,48(8): 821-828.
[15]Dworzak J, Lamecker H, von Berg J, et al. 3D reconstruction of the human rib cage from 2D projection images using a statistical shape model[J]. Int J Comput Ass Radiol Surg, 2010, 5(2): 111-124.
[16]Zhang L, Li X, Hu QM. Automatic rib segmentation in chest CT volume data[C]. Macao: International Conference on Biomedical Engineering and Biotechnology, 2012.
[17]Kim J, Kim SJ, Kim YJ, et al. Quantitative measurement method for possible rib fractures in chest radiographs[J]. Health Inform Res, 2013,19(3): 196-204.
[18]Meng XH, Wu DJ, Wang Z, et al. A fully automated rib fracture detection system on chest CT images and its impact on radiologist performance[J]. Skeletal Radiol,2021,50 (9): 1821-1828.
[19]Zhou QQ, Tang W, Wang JS, et al. Automatic detection and classification of rib fractures based on patients’ CT images and clinical information via convolutional neural network[J]. Eur Radiol, 2021,31(6): 3815-3825.

基金

上海市“科技创新行动计划”项目

PDF(1607 KB)

Accesses

Citation

Detail

段落导航
相关文章

/