乙酰辅酶A羧化酶1对胶质瘤细胞系U87细胞增殖、迁移和侵袭的影响

王阳 赵宝生 李超红 刘玉珍

解剖学报 ›› 2022, Vol. 53 ›› Issue (3) : 317-322.

PDF(1782 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(1782 KB)
解剖学报 ›› 2022, Vol. 53 ›› Issue (3) : 317-322. DOI: 10.16098/j.issn.0529-1356.2022.03.007
肿瘤生物学

乙酰辅酶A羧化酶1对胶质瘤细胞系U87细胞增殖、迁移和侵袭的影响

  • 王阳1 赵宝生2 李超红1,2 刘玉珍1,2*
作者信息 +

Effects of acetyl-CoA carboxylase 1 on proliferation, migration and invasion of glioma cell line U87

  • WANG  Yang1  ZHAO  Bao-sheng2  LI  Chao-hong1,2  LIU  Yu-zhen1,2*
Author information +
文章历史 +

摘要

目的 探讨乙酰辅酶A羧化酶1(ACC1)对人胶质瘤细胞系U87细胞增殖、迁移及侵袭的作用。  方法  Western blotting检测人胶质瘤细胞系U87、U251及U373中ACC1的表达;构建ACC1过表达质粒载体,将过表达ACC1质粒载体瞬时转染至U87细胞中;Western blotting检测转染后U87细胞中ACC1表达情况;MTT实验检测过表达ACC1对U87细胞增殖的影响;Transwell迁移和侵袭实验分别检测过表达ACC1对U87细胞迁移和侵袭的影响;划痕实验检测过表达ACC1对U87细胞划痕愈合能力的影响;Western blotting检测相关蛋白表达变化。  结果  与人胶质瘤细胞系U251和U373相比,U87细胞中ACC1表达较低;ACC1过表达抑制U87细胞增殖(P<0.01);ACC1过表达抑制U87细胞迁移、侵袭和划痕愈合能力(P<0.01);ACC1过表达迁移和侵袭相关蛋白波形蛋白(vimentin)、纤维连接蛋白(fibronectin)和尿激酶型纤溶酶原激活剂(uPA)表达下调(P<0.01),凋亡抑制蛋白Bcl-2和细胞周期蛋白(cyclin) B、cyclin D表达下调(P<0.01),p-STAT3蛋白表达下调(P<0.01),细胞周期蛋白P21表达上调(P<0.01)。  结论  过表达ACC1可能通过抑制STAT3活性,抑制人胶质瘤细胞的增殖、迁移和侵袭。

Abstract

Objective To explore the effect of acetyl-CoA carboxylase 1(ACC1) on cell proliferation, migration and invasion of human glioma cell line U87.   Methods  Western blotting was performed to examine endogenous ACC1 expression in human glioma cell lines U87, U251 and U373. ACC1 overexpression plasmid and the plasmid vector were transiently transfected into U87 cells. The level of ACC1 in control and ACC1 overexpression cells was examined by Western blotting. The effect of ACC1 on U87 cells migration and invasion was detected by Transwell assay. The effect of ACC1 on U87 cells scratch healing ability was detected by scratch test. The effect of ACC1 on U87 cells proliferation was investigated by MTT assay. Western blotting was conducted to detect the level changes of proteins.  Results  Among three human glioma cell lines U87, U251 and U373, endogenous ACC1 level in U87 cells was lower than that in other two cell lines. ACC1 overexpression inhibited U87 cell proliferation, as well as cell migration, invasion and scratch healing ability (P<0.05). Vimentin, fibronectin, urokinase type plasminogen activator (uPA), Bcl-2, cyclin B, cyclin D and p-STAT3 were down-regulated (P<0.05), P21 was up-regulated (P<0.05) after ACC1 overexpression.    Conclusion  These results suggest that ACC1 suppresses the proliferation, migration and invasion of human glioma cells, probably by inhibiting STAT3 activity.

关键词

乙酰辅酶A羧化酶1 / U87细胞 / 增殖 / 迁移 / 侵袭 / 免疫印迹法 /

Key words

Acetyl-CoA carboxylase 1 / U87 cell / Proliferation / Migration / Invasion / Western blotting / Human

引用本文

导出引用
王阳 赵宝生 李超红 刘玉珍. 乙酰辅酶A羧化酶1对胶质瘤细胞系U87细胞增殖、迁移和侵袭的影响[J]. 解剖学报. 2022, 53(3): 317-322 https://doi.org/10.16098/j.issn.0529-1356.2022.03.007
WANG Yang ZHAO Bao-sheng LI Chao-hong LIU Yu-zhen. Effects of acetyl-CoA carboxylase 1 on proliferation, migration and invasion of glioma cell line U87[J]. Acta Anatomica Sinica. 2022, 53(3): 317-322 https://doi.org/10.16098/j.issn.0529-1356.2022.03.007
中图分类号: R739.41   

参考文献

[1]Perry A, Wesseling P. Histologic classification of gliomas[J]. Handb Clin Neurol, 2016, 134: 71-95.
[2]Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820.
[3]Roumeliotis TI, Williams SP, Gonalves E, et al. Genomic determinants of protein abundance variation in colorectal cancer cells[J]. Cell Rep, 2017, 20(9): 2201-2214.
[4]Mounier C, Bouraoui L, Rassart E. Lipogenesis in cancer progression (review)[J]. Int J Oncol, 2014, 45(2): 485-492.
[5]Wang C, Rajput S, Watabe K, et al. Acetyl-CoA carboxylase-a as a novel target for cancer therapy[J]. Front Biosci (Schol Ed), 2010, 2: 515-526.
[6]Yahagi N, Shimano H, Hasegawa K, et al. Co-ordinate activation of lipogenic enzymes in hepatocellular carcinoma[J]. Eur J Cancer, 2005, 41(9): 1316-1322.
[7]Rios Garcia M, Steinbauer B, Srivastava K, et al. Acetyl-CoA carboxylase 1-dependent protein acetylation controls breast cancer metastasis and recurrence[J]. Cell Metab, 2017, 26(6): 842-855.
[8]Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses[J]. Neoplasia, 2017, 19(8): 649-658.
[9]Li G, Zhang Z,  Wang R, et al. Suppression of STIM1 inhibits human glioblastoma cell proliferation and induces G0/G1 phase arrest[J]. J Exp Clin Cancer Res, 2013, 32(1): 20.
[10]Yu XH, Ren XH, Liang XH, et al. Roles of fatty acid metabolism in tumourigenesis: Beyond providing nutrition (review) [J]. Mol Med Rep, 2018, 18(6): 5307-5316.
[11]Ye B, Yin L, Wang Q, et al. ACC1 is overexpressed in liver cancers and contributes to the proliferation of human hepatoma Hep G2 cells and the rat liver cell line BRL 3A[J]. Mol Med Rep, 2019, 19(5): 3431-3440.
[12]Li EQ, Zhao W, Zhang C, et al. Synthesis and anti-cancer activity of ND-646 and its derivatives as acetyl-CoA carboxylase 1 inhibitors[J]. Eur J Pharm Sci, 2019, 137: 105010.
[13]Jones JE, Esler WP, Patel R, et al. Inhibition of acetyl-coA carboxylase 1 (ACC1) and 2 (ACC2) reduces proliferation and De novo lipogenesis of EGFRvⅢ human glioblastoma cells[J]. PLoS One, 2017, 12(1): e0169566.
[14]Wellen KE, Thompson CB. A two-way street: reciprocal regulation of metabolism and signaling[J]. Nat Rev Mol Cell Biol, 2012, 13(4): 270-276.
[15]Kuchta K, Towpik J,  Biernacka A, et al. Predicting proteome dynamics using gene expression data[J]. Sci Rep, 2018, 8(1): 13866.
[16]Costanzo M, Kuzmin E, Leeuwen JV, et al. Global genetic networks and the genotype-to-phenotype relationship[J]. Cell, 2019, 177(1): 85-100.
[17]Galdieri L, Vancura A. Acetyl-CoA carboxylase regulates global histone acetylation[J]. J Biol Chem, 2012, 287(28): 23865-23876.
[18]Chow JD, Lawrence RT, Healy ME, et al. Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation[J]. Mol Metab, 2014, 3(4): 419-431.
[19]Ouédraogo ZG, Biau J, Kemeny JL, et al. Role of STAT3 in genesis and progression of human malignant gliomas[J]. Mol Neurobiol, 2017, 54(8): 5780-5797.
[20]Rébé C, Ghiringhelli F. STAT3, a master regulator of anti-tumor immune response[J]. Cancers (Basel), 2019, 11(9): 1280.
[21]Wang J, Yang Y, Yang N, et al. Expression of phosphorylated-signal transduction and activator of transcription 3 (Y705) in adenomyosis and their clinical significances[J]. Acta Anatomica Sinica, 2016, 47(2):261-267. (in Chinese)
王静,杨阳,杨宁,等. 磷酸化信号转导和转录激活因子3(Y705)在子宫腺肌症中的表达及其临床意义[J]. 解剖学报,2016,47(2): 261-267.
[22]Piperi C, Papavassiliou KA, Papavassiliou AG. Pivotal role of STAT3 in shaping glioblastoma immune microenvironment[J]. Cells, 2019, 8(11): 1398.
[23]Avalle L, Camporeale A, Camperi A, et al. STAT3 in cancer: a double edged sword[J]. Cytokine, 2017, 98: 42-50.
[24]Sestito R, Madonna S, Scarponi C, et al. STAT3-dependent effects of IL-22 in human keratinocytes are counterregulated by sirtuin 1 through a direct inhibition of STAT3 acetylation[J]. FASEB J, 2011, 25(3): 916-927.
[25]Lv D, Li Y, Zhang W, et al. TRIM24 is an oncogenic transcriptional co-activator of STAT3 in glioblastoma[J]. Nat Commun, 2017, 8(1): 1454.

基金

新乡医学院第一附属医院博士基金;河南省科技厅科技攻关计划项目

PDF(1782 KB)

Accesses

Citation

Detail

段落导航
相关文章

/