基于磁共振影像组学特征分类胶质瘤和单发性脑转移瘤

陈嘉懿 王宝 刘英超 史勇红 宋志坚

解剖学报 ›› 2021, Vol. 52 ›› Issue (6) : 933-939.

PDF(3371 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(3371 KB)
解剖学报 ›› 2021, Vol. 52 ›› Issue (6) : 933-939. DOI: 10.16098/j.issn.0529-1356.2021.06.015
解剖学

基于磁共振影像组学特征分类胶质瘤和单发性脑转移瘤

  • 陈嘉懿1,2 王宝3 刘英超4 史勇红1,2* 宋志坚1,2* 
作者信息 +

Classification of glioma and solitary brain metastasis using magnetic resonance imaging radiomics feature

  • CHEN Jia-yi1,2 WANG Bao3 LIU Ying-chaoSHI Yong-hong1,2* SONG Zhi-jian1,2*
Author information +
文章历史 +

摘要

目的  应用临床常规3T磁共振T1、T2和液体衰减反转恢复(FLAIR)成像分析胶质瘤和单发性脑转移瘤的影像组学特征差异,探讨肿瘤区域不同方向以不同角度构建的纹理特征对区别两种肿瘤的意义,寻找一种可行的胶质瘤和单发性脑转移瘤高精度分类方法。   方法  43例胶质瘤患者和年龄、性别匹配的45例单发性脑转移瘤患者,从肿瘤区域轴状面、冠状面和矢状面方向的每1层构建不同角度的影像组学灰度共生矩阵,计算相应的纹理空间关系特征(包括对比度、相关性、能量和同质性);使用Wilcoxon秩和检验选择特征并降低冗余;所选特征经SVM线性核分类器分类,实现两种肿瘤的诊断。   结果  在分类胶质瘤和单发性脑转移瘤时,多模态多方向组合特征的精确性、召回率、F1分值和准确性分别是0.8857、0.9114、0.8944和0.8922;该组合特征在SVM线性核分类器下的受试者工作特征曲线下面积为0.9602;并将45例单发性脑转移瘤患者中的40例正确分类;43例胶质瘤患者中的39例正确分类。   结论  肿瘤区域的多模态多方向组合特征经SVM线性核分类器分类,可以鉴别胶质瘤和单发性脑转移瘤,这可作为第2意见,有效协助医生做出诊断。

Abstract

Objective  To analyze the difference of radiomics features between solitary brain metastasis and glioma using routine 3T T1, T2 and fluid attenuation inversion recovery (FLAIR) magnetic resonance imaging, to explore the significance of texture features constructed in different directions and angles in tumor regions in distinguishing the two kinds of tumors, and to explore a feasible method  for high-precision classification of solitary brain metastases and gliomas.    Methods  Given the multimodal images of 43 patients with glioma and 45 age- and sex- matched patients with solitary brain metastasis, the gray level co-occurrence matrices of different angles of each slice were constructed from the transverse, coronal and sagittal directions of the tumor regions of these images, and the texture spatial relationship features (including contrast, correlation, energy and homogeneity) were calculated. Wilcoxon rank sum test was used to eliminate redundant features and select features with strong distinguishing ability. Finally, SVM linear kernel classifier was used to classify the selected features to achieve the identification of the two kinds of tumors.    Results  When classifying glioma and solitary brain metastasis, the precision, recall, F1 score and accuracy of multimodal and multidirectional combination features were 0.8857, 0.9114, 0.8944 and 0.8922, respectively. The area under the receiver operating characteristic curve obtained by linear kernel SVM classifier was 0.9602. Totally 40 of the 45 patients with solitary brain metastases were correctly classified, and 39 of the 43 gliomas were correctly classified.   Conclusion  The multimodal and multi-directional combination features of tumor areas can be classified by linear kernel SVM classifier to distinguish gliomas from solitary brain metastases, which can be used as a second opinion to effectively assist doctors in making diagnosis.

关键词

胶质瘤 / 单发性脑转移瘤 / 影像组学 / 灰度共生矩阵 / Wilcoxon秩和检验 / 主成分分析 / 支持向量机 /

Key words

Glioma / Solitary brain metastasis / Radiomics / Gray level co-occurrence matrix / Wilcoxon rank sum test / Principal component analysis / SVM linear kernel classifier / Human

引用本文

导出引用
陈嘉懿 王宝 刘英超 史勇红 宋志坚. 基于磁共振影像组学特征分类胶质瘤和单发性脑转移瘤[J]. 解剖学报. 2021, 52(6): 933-939 https://doi.org/10.16098/j.issn.0529-1356.2021.06.015
CHEN Jia-yi WANG Bao LIU Ying-chao SHI Yong-hong SONG Zhi-jian. Classification of glioma and solitary brain metastasis using magnetic resonance imaging radiomics feature[J]. Acta Anatomica Sinica. 2021, 52(6): 933-939 https://doi.org/10.16098/j.issn.0529-1356.2021.06.015
中图分类号: CP391    

参考文献

[1] Tandel GS, Biswas M, Kakde OG, et al. A review on a deep learning perspective in brain cancer classification [J]. Cancers, 2019, 11(1): 111.
[2] Mitchell D, Kwon H, Kubica P, et al. Brain metastases: an update on multi-disciplinary approach of clinical management [J]. Neurochirurgie, 2021,doi: 10.1016/j.neuchi.2021.04.001. 
[3] Srinivasa Reddy A, Chenna Reddy P. MRI brain tumor segmentation and prediction using modified region growing and adaptive SVM [J]. Soft Computing, 2021, 25(5): 4135-4148.
[4] Shree NV, Kumar T. Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network [J]. Brain informatics, 2018, 5(1): 23-30.
[5] Arunachalam M, Royappan Savarimuthu S. An efficient and automatic glioblastoma brain tumor detection using shift-invariant shearlet transform and neural networks [J]. Int J Imag Syst Tech, 2017, 27(3): 216-226.
[6] Tustison NJ, Avants BB, Cook PA, et al. N4ITK: improved N3 bias correction [J]. IEEE Trans Med Imaging, 2010, 29(6): 1310-1320.
[7] Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL [J]. Neuroimage, 2004, 23(Suppl 1): S208-S219.
[8] Ulaby FT, Kouyate F, Brisco B, et al. Textural infornation in SAR images [J]. IEEE Trans Geosci Remote Sens, 1986, 24(2): 235-245.
[9] Rosner B, Glynn RJ, Ting Lee ML. Incorporation of clustering effects for the Wilcoxon rank sum test: a large-sample approach [J]. Biometrics, 2003, 59(4): 1089-1098.
[10] Breiman L. Bagging predictors [J]. Machine Learning, 1996, 24(2): 123-140.
[11] Varma S, Simon R. Bias in error estimation when using cross-validation for model selection [J]. BMC Bioinformatics, 2006, 7(1): 91.
[12] Hakyemez B, Erdogan C, Gokalp G, et al. Solitary metastases and high-grade gliomas: radiological differentiation by morphometric analysis and perfusion-weighted MRI [J]. Clin Radiol, 2010, 65(1): 15-20.
[13] Swinburne NC, Schefflein J, Sakai Y, et al. Machine learning for semi-automated classification of glioblastoma, brain metastasis and central nervous system lymphoma using magnetic resonance advanced imaging [J]. Ann Transl Med, 2019, 7(11): 232.
[14] Isobe T, Yamamoto T, Akutsu H, et al. Preliminary study for differential diagnosis of intracranial tumors using in vivo quantitative proton MR spectroscopy with correction for T2 relaxation time [J]. Radiography, 2015, 21(1): 42-46.
[15] Jin Y, Peng H, Peng J. Brain glioma localization diagnosis based on magnetic resonance imaging [J]. World Neurosurg, 2021, 149: 325-332.
[16] Papageorgiou T, Chourmouzi D, Drevelengas A, et al. Diffusion tensor imaging in brain tumors: a study on gliomas and metastases [J]. Physica Medica, 2015, 31(7): 767-773.
[17] Ortiz-Ramón R, Ruiz-Espa?a S, Mollá-Olmos E, et al. Glioblastomas and brain metastases differentiation following an MRI texture analysis-based radiomics approach [J]. Phys Med, 2020, 76: 44-54.
[18] Liang W, Zhao YQ, Gui DQ, et al. Prediction of lung cancer typing based on radiomics[J]. Acta Anatomica Sinica, 2019, 50(4): 495-500.(in Chinese)
梁伟,赵艳秋,桂东奇,等.基于影像组学的肺癌分型预测[J].解剖学报, 2019, 50(4): 495-500.

基金

基于深度学习的头颈部放疗计划图像分割新方法的研究

PDF(3371 KB)

Accesses

Citation

Detail

段落导航
相关文章

/