长链非编码RNA SPATA31D5P吸附微小RNA-320a促进乳腺癌细胞的增殖、迁移和侵袭

危敏 余海浪 王涵多 郜蕊 雷洁

解剖学报 ›› 2021, Vol. 52 ›› Issue (6) : 925-932.

PDF(6004 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(6004 KB)
解剖学报 ›› 2021, Vol. 52 ›› Issue (6) : 925-932. DOI: 10.16098/j.issn.0529-1356.2021.06.014
肿瘤生物学

长链非编码RNA SPATA31D5P吸附微小RNA-320a促进乳腺癌细胞的增殖、迁移和侵袭

  • 危敏1,2* 余海浪3 王涵多3 郜蕊1 雷洁2
作者信息 +

Long non-coding RNA SPATA31D5P promoting proliferation, migration and invasion of breast cancer cells through adsorption of microRNA-320a

  • WEI Min1,2*  YU Hai-lang3  WANG Han-duo3  GAO Rui1 LEI Jie2
Author information +
文章历史 +

摘要

目的  乳腺癌(BC)中存在多种长链非编码RNA(lncRNA)的异常表达,并且与生存预后密切相关。本研究旨在探讨lncRNA SPATA31D5P在乳腺癌中的表达并通过吸附miR-320a影响乳腺癌细胞增殖、侵袭和迁移能力。   方法  收集乳腺癌组织及癌旁组织各30例,采用Real-time PCR检测SPATA31D5P在乳腺癌组织及乳腺癌细胞系中的表达水平。选择乳腺癌MDA-MB-231细胞转染针对SPATA31D5P siRNA干扰载体,采用CCK-8法、5-乙炔基-2’脱氧尿嘧啶核苷(EdU)法、Transwell小室实验和细胞划痕实验测定细胞增殖、侵袭和迁移能力,流式细胞术检测细胞周期和凋亡的改变。采用生物信息学方法筛选可与SPATA31D5P互补结合的miRNAs, Realtime PCR及双荧光素酶报告实验验证SPATA31D5P对miR-320a的调控作用。   结果  乳腺癌组织中SPATA31D5P水平显著高于邻近正常乳腺组织,各乳腺癌细胞系中SPATA31D5P表达都高于正常乳腺上皮细胞MCF10 A。siRNA干扰组的SPATA31D5P水平为 0.288±0.052,低于空白对照组的1.114±0.096和阴性对照(NC)组的1.079±0.128 (P<0.01)。与NC组和空白对照组相比,干扰组MDA-MB-231细胞的增殖活力明显下降并出现G1期阻滞,凋亡率明显增加(P<0.01);干扰组的划痕愈合率和穿膜细胞数目分别为(14.36 ± 1.75)%和(26 ± 1.52)个,低于NC组的(52.25 ± 1.87)% 和(67.33 ± 2.91)个 (P<0. 01)。双荧光素酶实验证实,SPATA31D5P能够直接调控miR-320a的表达及荧光素酶活性。   结论  SPATA31D5P在乳腺癌中高表达,干扰其表达能有效抑制MDA-MB-231细胞增殖、迁移和侵袭,其作用机制可能与靶向调控miR-320a有关。

Abstract

Objective  Long non-coding RNA(lncRNA) are aberrantly expressed in breast cancer(BC) and strongly associated with its survival prognosis. The aim of this study is to investigate the expression and effect of lncRNA SPATA31D5P on the invasion and migration capacity of breast cancer cells through adsorption of miR-320a.    Methods  Totally 30 cases of BC tissues and paraneoplastic tissues were collected, and the expression levels of SPATA31D5P in BC tissues and BC cell lines were detected by Real-time PCR. MDA-MB-231 cells were transfected with SPATA31D5P siRNA interference vector, and cell proliferation, invasion and migration capacity were determined using the cell counting kit-8 assay (CCK-8), 5-ethynyl-2- deoxyuridine(EdU), Transwell and wound-healing assay respectively. And cell cycle and apoptosis were detected by flow cytometry. Bioinformatics approachs were used to screen for miRNAs that could bind complementarily to SPATA31D5P, and the regulatory effect of SPATA31D5P on miR-320a was detected by Real-time PCR and dual luciferase reporter assay.    Results  SPATA31D5P levels were significantly higher in BC tissues than in adjacent normal breast tissues, and SPATA31D5P expression was higher in each BC cell line than in normal breast epithelial cells MCF10 A. The level of SPATA31D5P in the interference group was 0.288±0.052, which was lower than that of the blank control group 1.114±0.096 and negative control(NC) group 1.079±0.128 (P<0.01). The proliferation activity of MDA-MB-231 cells in the interfered group was significantly reduced and apoptotic rate was obviously increased compared to the NC and control groups (P<0.01);the G1 phase block was observed in the interfered group; the scratch healing rate and number of perforated cells in the interference group were (14.36±1.75)% and (26±1.52), which were lower than (52.25±1.87)% and (67.33±2.91) of the NC group (P<0.01). Dual luciferase experiments confirmed that SPATA31D5P could directly regulate miR-320a expression and luciferase activity.    Conclusion  SPATA31D5P is highly expressed in BC, interfering with SPATA31D5P expression effectively inhibits the proliferation, migration and invasion of MDA-MB-231 cells, and the mechanism may be related to the targeted regulation of miR-320a.

关键词

乳腺癌 / 长链非编码RNA / SPATA31D5P / 微小RNA-320a / 侵袭 / 实时定量聚合酶链反应 /

Key words

Breast cancer / Long non-coding RNA / SPATA31D5P / MicroRNA-320a / Invasion / Real-time PCR / Human

引用本文

导出引用
危敏 余海浪 王涵多 郜蕊 雷洁. 长链非编码RNA SPATA31D5P吸附微小RNA-320a促进乳腺癌细胞的增殖、迁移和侵袭[J]. 解剖学报. 2021, 52(6): 925-932 https://doi.org/10.16098/j.issn.0529-1356.2021.06.014
WEI Min YU Hai-lang WANG Han-duo GAO Rui LEI Jie. Long non-coding RNA SPATA31D5P promoting proliferation, migration and invasion of breast cancer cells through adsorption of microRNA-320a[J]. Acta Anatomica Sinica. 2021, 52(6): 925-932 https://doi.org/10.16098/j.issn.0529-1356.2021.06.014
中图分类号: R737.9    

参考文献

[1] DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019 [J]. CA Cancer J Clin, 2019, 69(6): 438-451.
[2] Roumeliotis GA, Dostaler G, Boyd KU. Complementary and alternative medicines and patients with breast cancer: a case of mortality and systematic review of patterns of use in patients with breast cancer [J]. Plast Surg (Oakv), 2017, 25(4): 275-283.
[3] O’Grady S, Morgan MP. Microcalcifications in breast cancer: from pathophysiology to diagnosis and prognosis [J]. Biochim Biophys Acta Rev Cancer, 2018, 1869(2): 310-320.
[4] Guttman M, Amit Ⅰ, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large noncoding RNAs in mammals [J].Nature, 2009, 458(7235): 223-227.
[5] Sanchez Calle A, Kawamura Y, Yamamoto Y, et al. Emerging roles of long non-coding RNA in cancer [J]. Cancer Sci, 2018,109(7): 2093-2100.
[6] Strausberg RL, Feingold EA, Grouse LH, et al. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences [J]. Proc Natl Acad Sci USA, 2002, 99(26): 16899-16903.
[7] Kimura K, Wakamatsu A, Suzuki Y, et al. Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes [J]. Genome Res, 2006, 16(1): 55-65.
[8] Luo L, Yang R, Zhao S, et al. Decreased miR-320 expression is associated with breast cancer progression, cell migration, and invasiveness via targeting Aquaporin 1 [J]. Acta Biochim Biophys Sin (Shanghai), 2018, 50(5): 473-480.
[9] Wei M, Yu HL, Cai CX, et al. Construction of the AQP1 3’-UTR dual luciferase reporter vector and validation of the targeted relation with miR-204 [J]. Biotechnology,2019, 29(4): 324-329. (in Chinese)
危敏, 余海浪, 蔡翠霞, 等. 双荧光素酶报告系统鉴定miR-204对水通道蛋白1基因的调控作用 [J]. 生物技术, 2019, 29(04): 324-329.
[10] Liu DT, Yang ZhJ, Ding B, et al. Effects of microRNA-4286 on the growth,migration and invasion of gastric cancer cell line HGC-27 by regulating inositol polyphosphate-4-phosphatase typeⅠ[J]. Acta Anatomica Sinica,2021,52(3):405-409. (in Chinese)
刘东涛,杨志娟,丁波,等.微小RNA-4286调控肌醇多聚磷酸-4-磷酸酶Ⅰ型对胃癌细胞系HGC-27生长、迁移及侵袭的影响[J].解剖学报, 2021,52(3):405-409.
[11] Ma Zh,Jiang ZhX,Jiang Zh. Effect of PHLDA2 on proliferation, migration, invasion and apoptosis in hepatocellular carcinoma cells [J]. Acta Anatomica Sinica,2020,51(3):398-404.
马战,姜钟翔,姜政.PHLDA2对肝癌细胞的增殖、侵袭、迁移和凋亡的影响[J].解剖学报, 2020,51(3):398-404.
[12] Kopp F, Mendell JT. Mendell, functional classification and experimental dissection of long noncoding RNAs [J]. Cell, 2018, 172(3): 393-407.
[13] Chen X, Fan S, Song E. Noncoding RNAs: new players in cancers [J]. Adv Exp Med Biol, 2016, 927: 1-47.
[14] Prabhu KS, Raza A, Karedath T, et al. Non-coding RNAs as regulators and markers for targeting of breast cancer and cancer stem cells [J]. Cancers (Basel), 2020, 12(2):351.
[15] Pareja F, Reis-Filho JS. Triple-negative breast cancers - a panoply of cancer types [J]. Nat Rev Clin Oncol, 2018, 15(6): 347-348.
[16] Du Z, Gao W, Sun J, et al. Identification of long noncoding RNAmediated transcriptional dysregulation triplets reveals global patterns and prognostic biomarkers for ER+/PR+, HER2 and triple negative breast cancer [J]. Int J Mol Med, 2019, 44(3): 1015-1025.
[17] Thomson DW, Dinger ME. Dinger, Endogenous microRNA sponges: evidence and controversy [J]. Nat Rev Genet, 2016, 17(5): 272-283.
[18] Tay Y, Kats L, Salmena L, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs [J]. Cell, 2011,147(2): 344-357.
[19] Poliseno L, Salmena L, Zhang J, et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology [J]. Nature, 2010, 465(7301): 1033-1038.
[20] Shi L, Hong X, Ba L, et al. Long non-coding RNA ZNFX1-AS1 promotes the tumor progression and metastasis of colorectal cancer by acting as a competing endogenous RNA of miR-144 to regulate EZH2 expression [J]. Cell Death Dis, 2019, 10(3): 150.
[21] Piwecka M, Gla?ar P, Hernandez-Miranda LR, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function [J]. Science, 2017, 357(6357): eaam8526.
[22] Zhang T, Zou P, Wang T, et al. Down-regulation of miR-320 associated with cancer progression and cell apoptosis via targeting Mcl-1 in cervical cancer [J]. Tumour Biol, 2016, 37(7): 8931-8940.
[23] Zhao H, Dong T, Zhou H, et al. miR-320a suppresses colorectal cancer progression by targeting Rac1 [J]. Carcinogenesis, 2014, 35(4): 886-895.
[24] Hsieh IS, Chang KC, Tsai YT, et al. MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway [J]. Carcinogenesis, 2013, 34(3): 530-538.
[25] Sun JY, Huang Y, Li JP, et al. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting beta-catenin [J]. Biochem Biophys Res Commun, 2012, 420(4): 787-792.
[26] Schaar DG, Medina DJ, Moore DF, et al. miR-320 targets transferrin receptor 1 (CD71) and inhibits cell proliferation [J]. Exp Hematol, 2009, 37(2): 245-255.
[27] Tadano T, Kakuta Y, Hamada S, et al. MicroRNA-320 family is downregulated in colorectal adenoma and affects tumor proliferation by targeting CDK6 [J]. World J Gastrointest Oncol, 2016, 8(7): 532-542.
[28] Trimboli AJ, CantemirStone CZ, Li F, et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours [J]. Nature, 2009, 461(7267): 1084-1091.

基金

国家自然科学基金;深圳市科技计划项目

PDF(6004 KB)

Accesses

Citation

Detail

段落导航
相关文章

/