大鼠肝再生启动阶段能量代谢物靶向定量分析

杨晖 徐存拴

解剖学报 ›› 2021, Vol. 52 ›› Issue (3) : 377-383.

PDF(2736 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(2736 KB)
解剖学报 ›› 2021, Vol. 52 ›› Issue (3) : 377-383. DOI: 10.16098/j.issn.0529-1356.2021.03.008
细胞和分子生物学

大鼠肝再生启动阶段能量代谢物靶向定量分析

  • 杨晖1,2 徐存拴1,2*
作者信息 +

Targeted quantitative analysis of energy metabolites in the priming phase during rat liver regeneration

  • YANG Hui1, 2 XU Cun-shuan1, 2*
Author information +
文章历史 +

摘要

目的 探讨大鼠肝再生 (LR)启动阶段能量代谢物的变化对LR的调控作用。   方法  大鼠随机分为3组,每组5只,包括两个部分肝切除组(PH)和1个正常对照组。运用质谱选择反应检测扫描/多反应检测扫描(SRM/MRM)对29种能量代谢物的含量进行靶向代谢组学鉴定。运用Ingenuity Pathway Analysis (IPA)软件进行整合分析,包括经典途径和分子相互作用网络。   结果  3-磷酸-D-甘油酸酯、一磷酸腺苷、环腺苷酸、D-果糖1,6-二磷酸、磷酸二羟丙酮、单磷酸鸟苷、三磷酸鸟苷、烟酰胺腺嘌呤二核苷酸和烟酰胺腺嘌呤二核苷酸磷酸含量显著增加。α-酮戊二酸、β-D-果糖6-磷酸、枸橼酸、D-葡萄糖-6-磷酸、乳酸、还原型辅酶Ⅱ、草酰乙酸和丙酮酸含量显著减少。聚类分析发现,这些代谢物可以聚为4类。IPA分析表明,肝再生起始阶段的生物分子变化主要与碳水化合物代谢,细胞生长和增殖,机体发育相关。在肝再生启动阶段,磷酸化腺苷酸活化蛋白激酶(AMPK)、缺氧诱导因子1α(HIF-1α)、过氧化物酶体增殖物激活受体(PPAR)、蛋白激酶A(PKA)和磷脂酰肌醇-3激酶/蛋白激酶B(PI3K/Akt)信号通路与能量代谢相关,糖酵解可能是主要的供能方式。   结论  大鼠肝再生启动阶段能量代谢物的变化对肝再生具有调控作用。

Abstract

Objective  To investigate the regulation of liver regeneration (LR) by changes in energy metabolites in the initiation phase during rat liver regeneration.    Methods  Rats were randomly divided into 3 groups with 5 rats in each group, including two partial hepatectomy (PH) groups and one normal control group. Selective reaction monitoring/multiple reaction monitoring (SRM/MRM) was employed in the targeted metabolomics identification of 29 energy metabolites. Ingenuity Pathway Analysis (IPA) was applied for integration analysis, including canonical pathway and molecular interaction network.    Results  The levels of 3-phospho-D-glycerate, AMP, cyclic AMP, D-fructose 1, 6-bisphosphate, dihydroxyacetome phosphate(DHAP), guanosine monophosphate(GMP), guanosine triphosphate(GTP), nicotinamide adenine dinucleotide(NAD) and nicotinamide adenine dinueleotide phosphate(NADP) significantly increased. The levels of alpha-ketoglutarate, beta-D-fructose 6-phosphate, cis-aconitate, D-glucose 6-phosphate, lactate, NADPH, oxaloacetate and pyruvate dramatically reduced. Through hierarchical clustering analysis of energy metabolisms, these energy metabolisms can be grouped into four clusters. IPA showed that the biomolecular changes in the priming phase of liver regeneration are mainly related to carbohydrate metabolism, cellular growth and proliferation, and organismal development. During the priming phase of liver regeneration, adenosine 5’-monphosphate-activated protein kinase (AMPK), hypoxia-inducible factor 1α (HIF-1α), peroxisome proliferator-activated receptor (PPAR), protein kinase A (PKA) and phosphatid  linositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathways are involved in energy metabolism, and glycolysis may be the main mode of energy supply.    Conclusion  The result  suggests that the changes of energy matabolites during the initial stage of LR play a regulatory role in live regeneration.

关键词

肝再生 / 能量代谢 / 靶向代谢 / 聚类分析 / 创新路径分析 / 大鼠

Key words

Liver regeneration / Energy metabolism / Targeted metabolomics / Hierarchical clustering / Ingenuity Pathway Analysis / Rat

引用本文

导出引用
杨晖 徐存拴. 大鼠肝再生启动阶段能量代谢物靶向定量分析[J]. 解剖学报. 2021, 52(3): 377-383 https://doi.org/10.16098/j.issn.0529-1356.2021.03.008
YANG Hui XU Cun-shuan. Targeted quantitative analysis of energy metabolites in the priming phase during rat liver regeneration[J]. Acta Anatomica Sinica. 2021, 52(3): 377-383 https://doi.org/10.16098/j.issn.0529-1356.2021.03.008
中图分类号: R575    

参考文献

[1] Yang XG, Li ShH, He ChC, et al. Research progress of growth arrest and DNA damage inducible 45α in liver regeneration and liver diseases[J]. Acta Anatomica Sinica, 2018, 49 (2): 268-272. (in Chinese)
杨献光, 李帅洪, 和春翠, 等. 生长停滞和DNA损伤诱导蛋白45α在肝再生及肝病中的研究进展[J]. 解剖学报, 2018, 49 (2): 268-272.
[2] Li M, Zhou X, Mei J, et al. Study on the activity of the signaling pathways regulating hepatocytes from G0 phase into G1 phase during rat liver regeneration[J]. Cell Mol Biol Lett, 2014, 19(2): 181-200.
[3] Agius L. Role of glycogen phosphorylase in liver glycogen metabolism[J]. Mol Aspects Med, 2015, 46: 34-45.
[4] Nath S, Villadsen J. Oxidative phosphorylation revisited [J]. Biotechnol Bioeng, 2015, 112(3):429-437.
[5] Xu C, Chen X, Chang C, et al. Transcriptome analysis of hepatocytes after partial hepatectomy in rats[J]. Dev Genes Evol, 2010, 220(9-10): 263-274.
[6] ?ivny' P, ?ivnáH, Palicˇka V, et al. Modulation of rat liver regeneration after partial hepatectomy by dietary cholesterol[J]. Acta Medica, 2018, 61(1): 22-28.
[7] Hopkins M, Tyson JJ, Novák B. Cell-cycle transitions: a common role for stoichiometric inhibitors[J]. Mol Biol Cell, 2017, 28(23): 3437-3446.
[8] Xu C, Yang Y, Yang J, et al. Analysis of the role of the integrin signaling pathway in hepatocytes during rat liver regeneration[J]. Cell Mol Biol Lett, 2012, 17(2): 274-288.
[9] Han HS, Kang G, Kim JS, et al. Regulation of glucose metabolism from a liver-centric perspective[J]. Exp Mol Med, 2016, 48(3): e218.
[10] Tanaka T, Fujishima Y, Hanano S, et al. Intracellular disposition of polysaccharides in rat liver parenchymal and nonparenchymal cells[J]. Int J Pharmaceut, 2004, 286(1-2): 9-17.
[11] Weymann A, Hartman E, Gazit Ⅴ, et al. p21 is required for dextrose-mediated inhibition of mouse liver regeneration[J]. Hepatology, 2009, 50(1): 207-215.
[12] Yu D, Peng Y, Ayaz-Guner S, et al. Comprehensive characterization of AMP-activated protein kinase catalytic domain by top-down mass spectrometry[J]. J Am Soc Mass Spectr, 2016, 27(2): 220-232.
[13] Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases[J]. Pharmacol Therapeut, 2015, 148(4): 114-131.
[14] Zhang W, Zhou X, Yao Q, et al. HIF-1 mediated production of exosomes during hypoxia is protective in renal tubular cells[J]. Am J Physiol Renal Physiol, 2017, 313(4): F906-F913.
[15] Zeng X J, Bi X C, Dai Q S, et al. Effects of PPAR-gamma on the proliferation and glycolysis metabolism of prostate cancer cells[J]. Zhonghua Nan Ke Xue, 2012, 18(8): 692-696.

基金

973计划前期专项

PDF(2736 KB)

Accesses

Citation

Detail

段落导航
相关文章

/