低氧通过上调乙酰辅酶A羧化酶1促进肺腺癌A549细胞迁移

金家豪 赵宝生 刘丹辉 刘玉珍

解剖学报 ›› 2021, Vol. 52 ›› Issue (2) : 258-263.

PDF(5684 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(5684 KB)
解剖学报 ›› 2021, Vol. 52 ›› Issue (2) : 258-263. DOI: 10.16098/j.issn.0529-1356.2021.02.015
肿瘤生物学

低氧通过上调乙酰辅酶A羧化酶1促进肺腺癌A549细胞迁移

  • 金家豪1,3 赵宝生1,2 刘丹辉1,2 刘玉珍1,2,3*
作者信息 +

Hypoxia promotes lung adenocarcinoma A549 cells migration by upregulating acetyl-CoA carboxylase 1

  • JIN Jia-hao1,3  ZHAO Bao-sheng1,2 LIU Dan-hui1,2 LIU Y-zhen1,2,3*
Author information +
文章历史 +

摘要

目的  探讨低氧通过乙酰辅酶A羧化酶1(ACC1)促进人肺腺癌A549细胞迁移的机制。   方法 低氧(5% O2)处理肺腺癌A549细胞,应用Transwell迁移实验检测细胞迁移能力,Western blotting检测ACC1表达及上皮-间质转化(EMT)相关蛋白的表达水平。 
  结果 与常氧(对照组)相比,低氧处理促进了A549细胞的迁移(P<0.01),低氧处理后ACC1表达上调(P<0.01),同时波形蛋白(vimentin)表达增加(P<0.05),E-钙黏蛋白(E-cadherin)表达下降(P<0.01);敲除ACC1后与对照组相比,A549细胞的迁移能力减弱(P<0.05),vimentin表达下降(P<0.05),E-cadherin表达增加(P<0.01);敲除ACC1后A549细胞在常氧和5% O2条件下迁移数目及vimentin、E-cadherin表达变化无统计学意义(P>0.05);补充亚油酸(LA)恢复低氧对A549细胞的促迁移作用(P<005)。   结论  低氧通过上调ACC1的表达促进肺腺癌A549细胞迁移及EMT转化。

Abstract

Objective  To investigate the mechanism of hypoxia to promote human lung adenocarcinoma A549 cells migration through acetyl-CoA carboxylase 1 (ACC1).    Methods  Lung adenocarcinoma A549 cells were treated with hypoxia (5% O2). Transwell migration assay was used to detect cell migration ability. Western blotting was used to detect ACC1 expression and epithelial-mesenchymal transition (EMT) related protein expression.    Results  Compared with the normoxia (control group), hypoxia treatment promoted the migration of A549 cells (P<0.01), ACC1 expression was up-regulated after hypoxia treatment (P<0.01), and vimentin expression was detected to increase significantly (P<0.05), E-cadherin expression decreased (P<0.01); Compared with the control group, migration of A549 cells was inhibited (P<0.05), vimentin expression was down-regulated (P<0.05), and E-cadherin expression increased after knocking down ACC1(P<0.01). After ACC1 was knocked down, the differences between the numbers of migration of A549 cells under normoxia and 5% O2 conditions and the expressions of vimentin and E-cadherin were not statistically significant (P>0.05). After linoleic acid (LA) supplementation, the hypoxia-induced migration promotion of A549 cells was restored.    Conclusion  Hypoxia can promote the migration and EMT transformation of lung adenocarcinoma A549 cells by up-regulating the expression of ACC1.

关键词

低氧 / 肺腺癌 / 迁移 / 乙酰辅酶A羧化酶1 / 免疫印迹法

Key words

Hypoxia / Lung adenocarcinoma / Migration;Acetyl-CoA carboxylase 1 / Western blotting

引用本文

导出引用
金家豪 赵宝生 刘丹辉 刘玉珍. 低氧通过上调乙酰辅酶A羧化酶1促进肺腺癌A549细胞迁移[J]. 解剖学报. 2021, 52(2): 258-263 https://doi.org/10.16098/j.issn.0529-1356.2021.02.015
JIN Jia-hao ZHAO Bao-sheng LIU Dan-hui LIU Y-zhen. Hypoxia promotes lung adenocarcinoma A549 cells migration by upregulating acetyl-CoA carboxylase 1[J]. Acta Anatomica Sinica. 2021, 52(2): 258-263 https://doi.org/10.16098/j.issn.0529-1356.2021.02.015
中图分类号: R734.2   

参考文献

[1] Molina JR, Yang P, Cassivi SD, et al. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship[J]. Mayo Clin Proc, 2008, 83(5):584-594.
[2] Eggert JA, Palavanzadeh M, Blanton A. Screening and early detection of lung Cancer[J]. Semin Oncol Nurs, 2017, 33(2):129-140.
[3] Manoochehri Khoshinani H, Afshar S, Najafi R. Hypoxia: a double-edged sword in cancer therapy[J]. Cancer Invest, 2016, 34(10): 536-545.
[4] Yang J, Ren B, Yang G, et al. The enhancement of glycolysis regulates pancreatic cancer metastasis[J]. Cell Mol Life Sci, 2020, 77(2):305-321.
[5] Nedeljkovic'M, Damjanovic' A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge[J]. Cells, 2019, 8(9):957.
[6] Riera-Domingo C, Audigé A, Granja S, et al. Immunity, hypoxia and metabolism-the ménage à trois of cancer: implications for immunotherapy[J]. Physiol Rev, 2020, 100(1):1-102.
[7] Popper HH. Progression and metastasis of lung cancer[J]. Cancer Metastasis Rev, 2016, 35(1):75-91.
[8] Furuta E, Okuda H, Kobayashi A, et al. Metabolic genes in cancer: their roles in tumor progression and clinical implications[J]. Biochim Biophys Acta, 2010, 1805(2):141-152.
[9] Sormendi S, Wielockx B. Hypoxia pathway proteins as central mediators of metabolism in the tumor cells and their microenvironment[J]. Front Immunol, 2018, 9:1.
[10] Lewis CA, Brault C, Peck B, et al. SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-0deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme[J]. Oncogene, 2015, 34(40):5128-5140.
[11] Svensson RU, Parker SJ, Eichner LJ, et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models[J]. Nat Med, 2016, 22(10):1108-1119.
[12] McGuirk S, Audet-Delage Y, St-Pierre J. Metabolic fitness and plasticity in cancer progression[J]. Trends Cancer, 2020, 6(1):49-61.
[13] Eltzschig HK, Carmeliet P. Hypoxia and inflammation[J]. N Engl J Med, 2011, 364(7):656-665.
[14] Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development[J]. Annu Rev Pathol, 2006, 1(1):119-150.
[15] H?ckel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects[J]. J Natl Cancer Inst, 2001, 93(4):266-276.
[16] Le QT, Chen E, Salim A, et al. An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers[J]. Clin Cancer Res, 2006, 12(5):1507-1514. 
[17] Song YQ, Zhou BJ. Recent progress on the mechanism of energy metabolism of hypoxia-inducible factor 1-driven skeletal muscle adaptations to hypoxia[J]. Acta Anatomica Sinica, 2017, 48(2):236-240. (in Chinese)
宋亚琼,周播江.低氧诱导因子-1在调控骨骼肌缺氧时能量代谢发生适应性变化的机制研究进展[J]. 解剖学报, 2017, 48(2):236-240.
[18] Zuo J, Wen J, Lei M, et al. Hypoxia promotes the invasion and metastasis of laryngeal cancer cells via EMT[J]. Med Oncol, 2016, 33(2):15.
[19] Hunkeler M, Hagmann A, Stuttfeld E, et al. Structural basis for regulation of human acetyl-CoA carboxylase[J]. Nature, 2018, 558(7710):470-474.
[20] Li Z, Zhang H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression[J]. Cell Mol Life Sci, 2016, 73(2):377-392.
[21] Currie E, Schulze A, Zechner R, er al. Cellular fatty acid metabolism and cancer[J]. Cell Metab, 2013, 18(2):153-161.
  [22] R?hrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer[J]. Nat Rev Cancer, 2016, 16(11):732-749.
[23] Corbet C, Feron O. Emerging roles of lipid metabolism in cancer progression[J]. Curr Opin Clin Nutr Metab Care, 2017, 20(4):254-260.

基金

新乡医学院研究生科研创新支持计划项目;新乡医学院第一附属医院博士基金;河南省科技厅科技攻关计划项目

PDF(5684 KB)

Accesses

Citation

Detail

段落导航
相关文章

/