石菖蒲挥发油对炎症痛大鼠基底外侧杏仁核中胶质纤维酸性蛋白和即刻早期基因表达的影响

李诗琪 杨翠珠 刘鸿庆 张春梅 田素民 刘靖 马宇昕 李国营

解剖学报 ›› 2021, Vol. 52 ›› Issue (2) : 189-195.

PDF(7690 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(7690 KB)
解剖学报 ›› 2021, Vol. 52 ›› Issue (2) : 189-195. DOI: 10.16098/j.issn.0529-1356.2021.02.005
神经生物学

石菖蒲挥发油对炎症痛大鼠基底外侧杏仁核中胶质纤维酸性蛋白和即刻早期基因表达的影响

  • 李诗琪 杨翠珠 刘鸿庆 张春梅 田素民 刘靖 马宇昕* 李国营*
作者信息 +

Effects of volatile oil from Acori Graminei Rhizoma on glial fibrillary acidic protein and immediate early genes expressions in the basal lateral amygdala of the inflammatory pain rats

  • LI Shi-qi  YANG Cui-zhu  LIU Hong-qing  ZHANG Chun-mei  TIAN Su-min  LIU Jing  MA Yu-xin*  LI Guo-ying*#br#
Author information +
文章历史 +

摘要

目的 通过注射完全弗氏佐剂(CFA)构建炎症痛大鼠模型,探讨石菖蒲挥发油对炎症痛大鼠基底外侧杏仁核(BLA)中神经胶质纤维酸性蛋白(GFAP)和即刻早期基因(c-fos)表达的影响。 方法 成年SD雄性大鼠36只,随机分为6组: 对照(control)组、假手术(sham)组、CFA组、CFA+5 g/(kg ·d)石菖蒲挥发油组、CFA+10 g/(kg ·d)石菖蒲挥发油组、CFA+20 g/(kg ·d)石菖蒲挥发油组,每组各6只动物,于灌胃21 d后取材。采用免疫荧光及Western blotting技术检测各组大鼠BLA中GFAP和c-fos表达量的变化。  结果 免疫荧光及Western blotting结果均显示,与control组相比,CFA组大鼠BLA中GFAP及c-fos阳性表达均显著增多(P<0.01);与CFA组相比,石菖蒲挥发油处理组GFAP和c-fos阳性表达均降低,且表达量呈剂量依赖性递减(P<0.01);其中,高剂量组GFAP和c-fos阳性表达的下降趋势较低剂量组相比更为显著(P<0.01)。  结论 石菖蒲挥发油可减少CFA诱导的炎症性疼痛大鼠BLA中星形胶质细胞表达,并进一步抑制c-fos的表达。

Abstract

Objective To construct a rat model of inflammatory pain by injecting complete Freund’adjuvant (CFA) to study effects of volatile oil of Acori Graminei Rhizoma on the expression of glial fibrillary acidic protein (GFAP) and immediate early gene c-fos in the basal lateral amygdale (BLA) of the inflammatory pain rats.    Methods Thirty-six adult male SD rats were randomly divided into 6 groups: control group, sham group, CFA group, CFA+5 g/(kg · day) volatile oil of Acori Graminei Rhizoma group, CFA+10 g/(kg · day) volatile oil of Acori Graminei Rhizoma group, CFA+ 20 g/(kg · day) volatile oil of Acori Graminei Rhizoma group, six rats in each group were taken gavage for 21 days. Immunofluorescence and Western blotting methods  were used to detect the expressions of GFAP and c-fos in the BLA of all rats.    Results Immunofluorescence and Western blotting results  showed that compared with the control group, the positive expression of GFAP and c-fos in the BLA of the CFA rats were significantly increased (P<0.01). After treatment of the volatile oil from Acori Graminei Rhizoma, the positive expressions of GFAP and c-fos were reduced compared to the CFA group, as well as the expression levels were decreased in the dose-dependent manner (P<0.01). Compared with the low dose group, the positive expression of GFAP and c-fos of high dose group were decreased significantly (P<0.01).    Conclusion The volatile oil fraction from Acori Graminei Rhizoma could reduce the expressions of GFAP and c-fos the BLA of CFA-induced chronic inflammatory pain model rats.

关键词

石菖蒲挥发油 / 基底外侧杏仁核 / 炎症痛 / 胶质纤维酸性蛋白 / 即刻早期基因 / 免疫荧光染色 / 免疫印迹法 / 大鼠

Key words

Volatile oil of Acori Graminei Rhizoma / Basal lateral amygdala / Inflammatory pain / Glial fibrillary acidic protein / Immediate early gene / Immunofluorescence / Western blotting / Rat

引用本文

导出引用
李诗琪 杨翠珠 刘鸿庆 张春梅 田素民 刘靖 马宇昕 李国营. 石菖蒲挥发油对炎症痛大鼠基底外侧杏仁核中胶质纤维酸性蛋白和即刻早期基因表达的影响[J]. 解剖学报. 2021, 52(2): 189-195 https://doi.org/10.16098/j.issn.0529-1356.2021.02.005
LI Shi-qi YANG Cui-zhu LIU Hong-qing ZHANG Chun-mei TIAN Su-min LIU Jing MA Yu-xin LI Guo-ying. Effects of volatile oil from Acori Graminei Rhizoma on glial fibrillary acidic protein and immediate early genes expressions in the basal lateral amygdala of the inflammatory pain rats[J]. Acta Anatomica Sinica. 2021, 52(2): 189-195 https://doi.org/10.16098/j.issn.0529-1356.2021.02.005
中图分类号: R338.2+2    

参考文献

[1] Orr PM, Shank BC, Black AC. The role of pain classification systems in pain management [J]. Crit Care Nurs Clin North Am, 2017, 29(4): 407-418.
[2] Julius D, Basbaum AI. Molecular mechanisms of nociception [J]. Nature, 2001, 413(6852): 203-210.
[3] Ronchetti S, Migliorati G, Delfino DV. Association of inflammatory mediators with pain perception [J]. Biomed Pharmacother, 2017, 96: 1445-1452.
[4] Zhang B, He XL, Ding Y, et al. Gaultherin, a natural salicylate derivative from Gaultheria yunnanensis: towards a better non-steroidal anti-inflammatory drug [J]. Eur J Pharmacol,2006, 530(1-2): 166-171.
[5] Lam KYC, Huang Y, Yao P, et al. Comparative study of different acorus species in potentiating neuronal differentiation in cultured PC12 cells [J]. Phytother Res, 2017, 31(11): 1757-1764.
[6] Li L, Sun HY, Liu W, et al. Silymarin protects against acrylamide-induced neurotoxicity via Nrf2 signalling in PC12 cells [J]. Food Chem Toxicol, 2017, 102: 93-101.
[7] Tian J, Tian Z, Qin SL, et al. Anxiolytic-like effects of alpha-asarone in a mouse model of chronic pain[J]. Metab Brain Dis, 2017, 32(6): 2119-2129.
[8] Gao YJ, Xu ZZ, Liu YC, et al. The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition [J]. Pain, 2010, 148(2): 309-319.
[9] Nasseri B, Zaringhalam J, Daniali S, et al. Thymulin treatment attenuates inflammatory pain by modulating spinal cellular and molecular signaling pathways [J]. Int Immunopharmacol, 2019, 70: 225-234. 
[10] Wang XS, Guan SY, Liu A, et al. Anxiolytic effects of formononetin in an inflammatory pain mouse model [J]. Mol Brain, 2019, 12(1): 36.
[11] López-González MJ, Landry M, Favereaux A. MicroRNA and chronic pain: from mechanisms to therapeutic potential [J]. Pharmacol Ther, 2017, 180: 1-15.
[12] Navratilova E, Nation K, Remeniuk B, et al. Selective modulation of tonic aversive qualities of neuropathic pain by morphine in the central nucleus of the amygdala requires endogenous opioid signaling in the anterior cingulate cortex [J]. Pain, 2020, 161(3): 609-618.
[13] Fernando AB, Murray JE, Milton AL. The amygdala: securing pleasure and avoiding pain [J]. Front Behav Neurosci, 2013, 7: 190.
[14] McGaugh JL. Consolidating memories [J]. Annu Rev Psychol, 2015, 66(1): 1-24.
[15] Chen FL, Dong YL, Zhang ZJ, et al. Activation of astrocytes in the anterior cingulate cortex contributes to the affective component of pain in an inflammatory pain model [J]. Brain Res Bull, 2012, 87(1): 60-66.
[16] Liu J, Liu J, Liao HY, et al. Effects of resveratrol pretreatment on activation and inflammation of astrocytes after oxygen-glucose deprivation/reoxygenation injury in vitro [J]. Acta Anatomica Sinica, 2020, 51(3): 313-319. (in Chinese)
刘菁, 刘杰, 廖鸿雁, 等. 白藜芦醇预处理对星形胶质细胞氧糖剥夺/再复氧损伤后活化及炎症反应的影响 [J]. 解剖学报,2020, 51(3):313-319.
 [17] Liu H, Li S, Yang C, et al. D-serine ameliorates motor and cognitive impairments in beta-amyloid 1-42 injected mice by inhibiting JNK signaling pathway [J]. J Chem Neuroanat, 2020, 109: 101852.
[18] Wang YT, Shan ShM, Liu XZh. The effect of autophagy on hyperalgesia and astrocytic activation in rats with inflammatory pain [J]. Chinese Journal of Integrated Traditional and Western Medicine in Intensive and Critical Care, 2017, 24(4): 364-368. (in Chinese)
王云涛, 单世民, 刘晓智. 自噬对炎性痛大鼠痛敏和星形胶质细胞活化的影响 [J]. 中国中西医结合急救杂志,2017, 24(4): 364-368.
[19] Zhang T, Zhao W, Zhang M, et al. Analgesic activities of the mixed opioid and NPFF receptors agonist DN-9 in a mouse model of formalin-induced orofacial inflammatory pain [J]. Peptides, 2018, 110: 30-39.
[20] Chen G, Li JJ, Song FX, et al. The role of KOR/ERK/c-Fos signaling pathway in Cokefentanyl-induced postoperative hyperalgesia inrats [J]. Chinese Journal of Pain Medicine, 2018, 24(12): 897-904. (in Chinese)
陈岗,李晶晶,宋凤香,等. ERK/c-Fos信号通路调控KOR在瑞芬太尼诱发痛觉过敏中的作用 [J].中国疼痛医学杂志,2018, 24(12):897-904.
[21] Yao YX, Zhang YF, Yang Y, et al. Spinal synaptic scaffolding protein Homer 1b/c regulates CREB phosphorylation and c-fos activation induced by inflammatory pain in rats [J]. Neurosci Lett, 2014, 559: 88-93.
[22] Qiu Q, Sun L, Wang X M, et al. Propofol produces preventive analgesia via GluN2B-containing NMDA receptor/ERK1/2 signaling pathway in a rat model of inflammatory pain [J]. Mol Pain, 2017, 13: 1744806917737462.
[23] Gao N, Liu H, Li S, et al. Volatile oil from acorus gramineus ameliorates the injury neurons in the hippocampus of amyloid beta 1-42 injected mice [J]. Anat Rec (Hoboken), 2019, 302(12): 2261-2270.
[24] Wang N, Wang H, Li L, et al. Beta-asarone inhibits amyloid-beta by promoting autophagy in a cell model of Alzheimer’s disease [J]. Front Pharmacol, 2019, 10: 1529.
[25] Kim KH, Moon E, Kim HK, et al. Phenolic constituents from the rhizomes of acorus gramineus and their biological evaluation on antitumor and anti-inflammatory activities [J]. Bioorg Med Chem Lett, 2012, 22(19): 6155-6159.
[26] Huang L, Deng M, He Y, et al. Beta-asarone and levodopa co-administration increase striatal dopamine level in 6-hydroxydopamine induced rats by modulating P-glycoprotein and tight junction proteins at the blood-brain barrier and promoting levodopa into the brain [J]. Clin Exp Pharmacol Physiol, 2016, 43(6): 634-643.
[27] Lim HW, Kumar H, Kim BW, et al. Beta-asarone (cis-2,4,5-trimethoxy-1-allyl phenyl), attenuates pro-inflammatory mediators by inhibiting NF-kappa B signaling and the JNK pathway in LPS activated BV-2 microglia cells [J]. Food Chem Toxicol, 2014, 72: 265-272.
[28] Saldanha AA, Vieira L, de Oliveira FM, et al. Anti-inflammatory and central and peripheral anti-nociceptive activities of alpha-asarone through the inhibition of TNF-alpha production, leukocyte recruitment and iNOS expression, and participation of the adenosinergic and opioidergic systems [J]. Inflammopharmacology, 2020, 28(4): 1039-1052.

基金

广东省自然科学基金;广州市科技计划项目科技创新人才专项-珠江科技新星

PDF(7690 KB)

Accesses

Citation

Detail

段落导航
相关文章

/