铁转运相关蛋白在肌萎缩性侧索硬化症转基因鼠脊髓中的表达变化

张雅雯 高莹 孙菡聪 张皓云 王凤斌

解剖学报 ›› 2021, Vol. 52 ›› Issue (2) : 161-167.

PDF(2853 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(2853 KB)
解剖学报 ›› 2021, Vol. 52 ›› Issue (2) : 161-167. DOI: 10.16098/j.issn.0529-1356.2021.02.001
神经生物学

铁转运相关蛋白在肌萎缩性侧索硬化症转基因鼠脊髓中的表达变化

  • 张雅雯1,5 高莹2,5 孙菡聪3,5 张皓云4,5* 王凤斌1* 
作者信息 +

Expressions of iron transport related proteins in the spinal cord of amyotrophic lateral sclerosis transgenic mice

  • ZHANG Ya-wen1,5 GAO Ying2,5 SUN Han-cong3,5 ZHANG Hao-yun4,5* WANG Feng-bin1*
Author information +
文章历史 +

摘要

目的 探讨肌萎缩性侧索硬化症(ALS)转基因鼠脊髓内铁转运相关蛋白表达变化与铁稳态失衡的关联。 方法 选取hSOD1G93A转基因鼠(ALS鼠)和同窝野生型鼠(WT鼠),分别于生后70、95和122 d分离脊髓,每时间点每组各9只实验动物。Western blotting检测脊髓组织内铁转运蛋白二价金属转运蛋白-1(DMT1)、铁转运蛋白-1(FPN1)及调节蛋白铁调节蛋白-1(IRP1)的表达;免疫荧光双重标记检测脊髓腰段前角内细胞共定位情况。   结果 Western blotting显示,与WT鼠比较,各时间点ALS鼠脊髓内DMT1表达均显著降低(P<0.05,P<0.01);70 d FPN1表达升高(P<0.05),95 d和122 d表达下降(P<0.01);95 d、122 d IRP1表达降低(P<0.01)。免疫荧光双重标记显示,在70 d WT鼠和ALS鼠腰段脊髓中DMT1主要与β-微管蛋白Ⅲ(β-tubulin Ⅲ)共表达。与WT组相比,95 d ALS鼠脊髓腰段前角神经元内DMT1免疫反应强,而FPN1荧光强度减弱。随疾病进展,DMT1、FPN1与反应性胶质细胞共定位表达增多。IRP1随疾病进展表达强度降低。  结论 随ALS病程进展,发病早期神经元铁转入增加,转出减少,反应性神经胶质细胞铁转运活性增强,参与局部铁稳态失衡及脊髓前角运动神经元进行性丢失。IRP1表达降低,部分参与局部铁代谢调节。

Abstract

Objective  To investigate the relationship between the expressions of iron transport related proteins and the dysregulation of iron homeostasis in the spinal cord of amyotrophic lateral sclerosis(ALS) transgenic mice.  Methods The hSOD1G93A transgenic mice (ALS mice) and littermate wild-type mice (WT mice) were selected to separate the spinal cord at day 70, day 95, and day 122 after birth, 9 mice per time point and per group. Western blotting was used to detect the expressions of iron transporter divalent metal transporter-1 (DMT1), ferroportin 1 (FPN1) and regulatory protein iron regulatory protein 1(IRP1) in the spinal cord. Double immunofluorescence labeling was used to detect the co-localization of cells in the ventral horn of lumbar spinal cord.    Results Western blotting results  showed that compared with WT mice the expressions of DMT1 protein were down-regulated with the disease progression from day 70 to day 122 (P<0.05, P<0.01); FPN1 protein was transiently up-regulated at day 70 (P<0.05), and decline expressions were observed at day 95 and day 122 (P<0.01); IRP1 was down-regulated at day 95 and day 122 (P<0.01). Double immunofluorescence labeling revealed that at day 70, DMT1 co-expressed mainly with β-tubulin Ⅲ both in WT and ALS mice lumbar spinal cord. Compared with the WT group, the DMT1 immunoreactivity in the neurons of the ventral horn lumbar spinal cord of ALS mice was elevated at day 95, while the FPN1 fluorescence intensity was weak. With the disease progression, the co-localization expression of DMT1, FPN1 with reactive glial cells increased. With the disease progresses, the expression of IRP1 decreased.    Conclusion With the progression of ALS, iron influx increases and iron outflux decreases in neurons at the early-symptomatic stage of ALS, the activity of iron transport in reactive glial cells is enhanced, which participates in local iron homeostasis imbalance and progressive loss of motor neurons in ventral horn of spinal cord. Decreased expression of IRP1 partly participates in the regulation of local iron metabolism.

关键词

肌萎缩侧索硬化症 / 铁稳态 / 二价金属转运蛋白-1 / 铁转运蛋白1 / 铁调节蛋白 / 免疫印迹法 / 小鼠

Key words

Amyotrophic lateral sclerosis / Iron homeostasis / Divalent metal transporter-1 / Ferroportin 1 / Iron regulatory protein / Western blotting / Mouse

引用本文

导出引用
张雅雯 高莹 孙菡聪 张皓云 王凤斌. 铁转运相关蛋白在肌萎缩性侧索硬化症转基因鼠脊髓中的表达变化[J]. 解剖学报. 2021, 52(2): 161-167 https://doi.org/10.16098/j.issn.0529-1356.2021.02.001
ZHANG Ya-wen GAO Ying SUN Han-cong ZHANG Hao-yun WANG Feng-bin. Expressions of iron transport related proteins in the spinal cord of amyotrophic lateral sclerosis transgenic mice[J]. Acta Anatomica Sinica. 2021, 52(2): 161-167 https://doi.org/10.16098/j.issn.0529-1356.2021.02.001
中图分类号: R744.8   

参考文献

[1] Zarei S, Carr K, Reiley L, et al. A comprehensive review of amyotrophic lateral sclerosis [J]. Surg Neurol Int, 2015,6:171.
[2] Kaur SJ, McKeown SR, Rashid S. Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis [J]. Gene, 2016,577(2):109-118.
[3] Shaw PJ. Molecular and cellular pathways of neurodegeneration in motor neurone disease [J]. J Neurol Neurosurg Psychiatry, 2005,76(8):1046-1057.
[4] D’Amico E, Factor-Litvak P, Santella RM, et al. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis[J]. Free Radic Biol Med, 2013,65(113):509-527.
[5] Hadzhieva M, Kirches E, Wilisch-Neumann A, et al. Dysregulation of iron protein expression in the G93A model of amyotrophic lateral sclerosis[J]. Neuroscience, 2013,230(30):94-101. 
[6] Crichton RR, Dexter DT, Ward RJ. Brain iron metabolism and its perturbation in neurological diseases [J]. J Neural Transm (Vienna), 2011, 118(3):301-314.
[7] Jeong SY, Rathore KI, Schulz K, et al. Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis [J]. J Neurosci,2009,29(3):610-619.
[8] Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, Alzheimer’s, prions, bactericides, chemical toxicology and others as examples [J]. Arch Toxicol, 2010,84(11):825-889.
[9] Ikeda K, Hirayama T, Takazawa T, et al. Relationships between disease progression and serum levels of lipid, urate, creatinine and ferritin in japanese patients with amyotrophic lateral sclerosis: a cross-sectional study[J]. Intern Med, 2012,51(12):1501-1508.
[10] Wang T, Xu SF, Fan YG, et al. Iron pathophysiology in Alzheimer’s diseases [J]. Adv Exp Med Biol, 2019,1173(1):67-104.
[11] Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer‘s disease and Parkinson’s disease: targets for therapeutics [J]. J Neurochem, 2016,139(94):179-197. 
[12] Jiang H, Wang J, Rogers J, et al. Brain iron metabolism dysfunction in Parkinson’s disease [J]. Mol Neurobiol, 2017,54(4):3078-3101. 
[13] Ingrassia R, Garavaglia B, Memo M. DMT1 expression and iron levels at the crossroads between aging and neurodegeneration [J]. Front Neurosci, 2019,13():575.
[14] Fu LJ, Duan XL, Yu P, et al. The Expression and effects of hepcidin in mouse brain and its modulating effects on ferroportin 1 and divalent metal transporter 1[J]. Acta Anatomica Sinica, 2007, 38(3):265-270.(in Chinese)
付丽娟, 段相林, 于鹏, 等. 铁调素在小鼠脑内的表达及其对膜铁转运蛋白1和二价金属离子转运体1表达的影响[J]. 解剖学报, 2007,38(3): 265-270.
[15] Wang L, Liu X, You LH, et al. Hepcidin and iron regulatory proteins coordinately regulate ferroportin 1 expression in the brain of mice[J]. J Cell Physiol, 2019, 234(5):7600-7607.
[16] Pantopoulos K, Hentze MW. Activation of iron regulatory protein-1 by oxidative stress in vitro [J]. Proc Natl Acad Sci USA, 1998,95(18):10559-10563. 
[17] Zhou FH, Guan YJ, Chen YC, et al. miRNA-9 expression is upregulated in the spinal cord of G93A-SOD1 transgenic mice[J]. Int J Clin Exp Pathol, 2013,6(9):1826-1838.
[18] Pu LD, Zhang YW, Wang Q, et al. Expression of DDX3 and casein kinase 1ε in the hippocampus of the amyotrophic lateral sclerosis transgenic mice[J].Acta Anatomica Sinica, 2017, 48(4):375-380.(in Chinese)
蒲蕾东,张雅雯,王箐,等. DDX3和酪蛋白激酶1ε在肌萎缩侧索硬化症转基因鼠海马中的表达[J]. 解剖学报, 2017,48(4):375-380.
[19] Nakamura T, Naguro I, Ichijo H. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases[J]. Biochim Biophys Acta Gen Subj, 2019,1863(9):1398-1409.
[20] Urrutia P, Aguirre P, Esparza A, et al. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells[J]. J Neurochem, 2013, 126(114):541-549.
[21] Lee JK, Shin JH, Gwag BJ, et al. Iron accumulation promotes TACE-mediated TNF-α secretion and neurodegeneration in a mouse model of ALS[J]. Neurobiol Dis, 2015,80(7):63-69.
[22] Jeong SY, Rathore KI, Schulz K, et al. Dysregulation of iron homeostasis in the CNS contributes to disease progression in a mouse model of amyotrophic lateral sclerosis[J]. J Neurosci, 2009,29(3): 610-619.
[23] Healy S, McMahon JM, FitzGerald U. Modelling iron mismanagement in neurodegenerative disease in vitro: paradigms, pitfalls, possibilities & practical considerations[J]. Prog Neurobiol,2017,158(4):1-14.
[24] Zhang HY, Wang ND, Song N, et al. 6-Hydroxydopamine promotes iron traffic in primary cultured astrocytes [J]. Biometals, 2013,26(5):705-714.
[25] Bishop GM, Dang TN, Dringen R, et al. Accumulation of non-transferrin-bound iron by neurons, astrocytes, and microglia [J]. Neurotox Res, 2011,19(3):443-451. 
[26] Winn NC, Volk KM, Hasty AH. Regulation of tissue iron homeostasis: the macrophage “ferrostat”[J]. JCI Insight, 2020,5(2): e132964. 
[27] Cui JT, Guo XL, Li QJ, et al. Hepcidin-to-ferritin ratio is decreased in astrocytes with extracellular alpha-synuclein and iron exposure [J]. Front Cell Neurosci, 2020, 14:47. 

基金

国家自然科学基金;潍坊医学院博士启动基金

PDF(2853 KB)

Accesses

Citation

Detail

段落导航
相关文章

/