线粒体质量控制新途径:线粒体衍生囊泡

官伟康 吕静 杨朝鲜

解剖学报 ›› 2021, Vol. 52 ›› Issue (1) : 152-156.

PDF(864 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(864 KB)
解剖学报 ›› 2021, Vol. 52 ›› Issue (1) : 152-156. DOI: 10.16098/j.issn.0529-1356.2021.01.025
综述

线粒体质量控制新途径:线粒体衍生囊泡

  • 官伟康1,2 吕静1,2 杨朝鲜1,2*
作者信息 +

A new pathway for mitochondrial quality control: mitochondrial-derived vesicle

  • GUAN Wei-kang1,2 Lü Jing1,2 YANG Chao-xian1,2*
Author information +
文章历史 +

摘要

线粒体是真核细胞中非常复杂的双膜细胞器。在生理状态下,线粒体再生和降解是平衡的;细胞器中的蛋白质、脂质和DNA等组分受到损伤时,通过分裂、融合、自噬等途径维持线粒体稳态,以保持线粒体结构和功能的完整,这一过程通常称为“线粒体质量控制”。线粒体衍生囊泡(MDV)是新近发现的线粒体质量控制途径,在细胞应激早期有助于维持线粒体功能稳定,并在线粒体氧化应激中发挥重要作用。我们拟综述MDV的发现、转运途径、货物的选择以及对细胞的生理影响等。

Abstract

Mitochondria are very complex dual membrane organelles in eukaryotic cells. Under physiological conditions, the regeneration and degradation of mitochondria are balanced. When the components of the proteins, lipids and DNA in the organelles are damaged, the steady state of the mitochondria is maintained by means of division, fusion, autophagy and the like, so as to maintain the integrity of the mitochondrial structure and function, which is commonly referred to as a “mitochondrial mass control”. Mitochondrial-derived vesicle (MDV) is a newly discovered pathway of mitochondrial quality control, which plays an important role in the early stage of cell stress and helps maintain the stability of mitochondrial function. In this paper, the discovery of MDV, the transport pathway, the choice of goods and the physiological effects on cells are reviewed.

关键词

线粒体 / 线粒体质量控制 / 线粒体衍生囊泡

Key words

Mitochondria / Mitochondrial quality control / Mitochondrial-derived vesicle

引用本文

导出引用
官伟康 吕静 杨朝鲜. 线粒体质量控制新途径:线粒体衍生囊泡[J]. 解剖学报. 2021, 52(1): 152-156 https://doi.org/10.16098/j.issn.0529-1356.2021.01.025
GUAN Wei-kang Lü Jing YANG Chao-xian. A new pathway for mitochondrial quality control: mitochondrial-derived vesicle[J]. Acta Anatomica Sinica. 2021, 52(1): 152-156 https://doi.org/10.16098/j.issn.0529-1356.2021.01.025
中图分类号: Q246   

参考文献

[1] Redmann M, Benavides GA, Wani WY, et al. Methods for assessing mitochondrial quality control mechanisms and cellular consequences in cell culture[J]. Redox Biol, 2018, 17: 59-69.
[2] Bozi LH, Bechara LR, dos Santos AF, et al. Mitochondrial-derived vesicles: a new player in cardiac mitochondrial quality control[J]. J Physiol, 2016, 594(21): 6077-6078.
[3] SotoHeredero G, Baixauli F, Mittelbrunn M. Interorganelle communication between mitochondria and the endolysosomal system[J]. Front Cell Dev Biol, 2017, 5: 95.
[4] McLelland GL, Soubannier Ⅴ, Chen CX, et al. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control[J]. EMBO J, 2014, 33(4): 282-295.
[5] Neuspiel M, Schauss AC, Braschi E, et al. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers[J]. Current Biology, 2008, 18(2): 102-108.
[6] Cadete VJ, Deschênes S, Cuillerier A, et al. Formation of Mitchondrial-derived vesicles is an active and physiologically relevant mitochondrial quality control process in the cardiac system[J]. J Physiol, 2016, 594(18): 5343-5362.
[7] Yamashita A, Fujimoto M, Katayama K, et al. Formation of mitochondrial outer membrane derived protrusions and vesicles in arabidopsis thaliana[J]. PLoS One, 2016, 11(1): e0146717.
[8] Soubannier Ⅴ, McLelland G, Zunino R, et al. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes[J]. Curr Biol, 2012, 22(2): 135-141.
[9] McLelland GL, Fon EA. Principles of mitochondrial vesicle transport [J]. Curr Opin Physiol, 2018, 3: 25-33.
[10] Vincowa ES, Merrihewb G, Thomas RE, et al. The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo [J]. Proc Nat Acad Sci USA, 2013, 110(16): 6400-6405.
[11] Chan NC, Salazar AM, Pham AH, et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy [J]. Hum Mol Gene, 2011, 20(9): 1726-1737.
[12] Gautier CA, Kitada T, Shen J. Loss of PINK1 causes mitochondrial functional defects[J]. Proc Nat Acad Sci USA, 2008, 105(32): 11364-11369.
[13] Narendra DP, Jin SM, Tanaka A. PINK1 is selectively stabilized on impaired mitochondria to activate parkin[J]. PLoS Biol, 2010, 8(1): e1000298.
[14] Larsen SB, Hanss Z, Krüger R. The genetic architecture of mitochondrial dysfunction in Parkinson’s disease[J]. Cell Tissue Res, 2018, 373(1): 21-37.
[15] Roberts RF, Tang MY, Fon EA, et al. Defending the mitochondria: the pathways of mitophagy and mitochondrial-derived vesicles [J]. Cell Biol, 2016, 79: 427-436.
[16] Sugiura A, McLelland GL, Fon EA, et al. A new pathway for mitochondrial quality control:mitochondrial-derived vesicles[J]. EMBO J, 2014, 33(19): 2142-2156.
[17] Lundmark R, Carlsson SR. SNX9 — a prelude to vesicle release[J]. J Cell Sci, 2009, 122(pt1): 5-11.
[18] Schoneberg J, Lehmann M, Ullrich A, et al. Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission[J]. Nat Commun, 2017, 8: 15873.
[19] Juhász GA. mitochondrial-derived vesicle HOPS to endolysosomes using Syntaxin-17[J]. J Cell Biol, 2016, 214(3): 241-243.
[20] McLelland GL, Lee SA, Mcbride HM, et al. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system[J]. J Cell Biol, 2016, 214(3): 275-291.
[21] Andrade-Navarro MA, Sanchez-Pulido L, McBride HM. Mitochondrial vesicles: an ancient process providing new links to peroxisomes [J]. Curr Opin Cell Biol, 2009, 21(4): 560-567.
[22] Braschi E, Goyon V, Zunino R, et al. Vps35 mediates vesicle transport between the mitochondria and peroxisomes[J]. Curr Biol, 2010, 20(14):1310-1315.
[23] Park J, Zhao H, Chang S.The unique mechanism of SNX9 BAR domain for inducing membrane tubulati[J]. Mol Cells, 2014, 37(10): 753-758. 
[24] Tang FL, Liu W, Hu JX, et al. VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function[J]. Cell Rep, 2015, 12(10): 1631-1643.
[25] Wang W, Ma X, Zhou L, et al. A conserved retromer sorting motif is essential for mitochondrial DLP1 recycling by VPS35 in Parkinson’s disease model[J]. Hum Mol Genet, 2017, 26(4): 781-789.
[26] Wang W, Wang X, Fujioka H, et al. Parkinson’s disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes[J]. Nat Med, 2016, 22(1): 54-63.
[27] Soubannier V, Rippstein P, Kaufman BA, et al. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo[J]. PLoS One, 2012, 7(12): e52830.
[28] Motley AM, Hettema EH. Yeast peroxisomes multiply by growth and division[J]. J Cell Biol, 2007, 178(3): 399-410.
[29] Sugiura A, Mattie S, Prudent J. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes[J]. Nature, 2017, 542(7640): 251-254.
[30] Agrawal G, Subramani S. De novo peroxisome biogenesis: evolving concepts and conundrumS[J]. Biochim Biophys Acta, 2016, 1863(5): 892-901.
[31] Dimitrov L, Lam SK, Schekman R. The role of the endoplasmic reticulum in peroxisome biogenesis[J]. Cold Spring Harb Perspect Biol, 2013, 5(5): a013243.
[32] Hua R, Kim PK. Multiple paths to peroxisomes: mechanism of peroxisome maintenance in mammals[J]. Biochim Biophys Acta, 2016, 1863(5): 881-891. 
[33] Hua R, Kim PK. Emerging roles of mitochondria in the evolution, biogenesis, and function of peroxisomes [J]. Front Physiol, 2013, 4: 268.
[34] Schrader M, Costello JL, Godinho LF, et al. Proliferation and fission of peroxisomes - An update[J]. Biochim Biophys Acta, 2016, 1863(5): 971-983.
[35] Schrader M, Pellegrini L. The making of a mammalian peroxisome, version 2.0:mitochondria get into the mix[J]. Cell Death and Differ, 2017, 24(7): 1148-1152.
[36] Matheoud D, Sugiura A, Bellemare-Pelletier A, et al. Parkinson’s disease-related proteins PINK1 and parkin repress mitochondrial antigen presentation[J]. Cell, 2016,166(2): 314-327.
[37] Baden P, Deleidi M. Mitochondrial antigen presentation: a vacuolar path to autoimmunity in parkinson’s disease[J].Trends Immunol, 2016, 37(11): 719-721.
[38] Roberts RF, Fon EA. Presenting mitochondrial antigens: PINK1, Parkin and MDVs steal the show[J]. Cell Res, 2016, 26(11): 1180-1181.
[39] Abuaita BH, Schultz TL, O’Riordan MX. Mitochondria-derived vesicles deliver antimicrobial reactive oxygen species to control phagosome-localized staphylococcus aureus[J]. Cell Host Microbe, 2018, 24(5): 625-636.
[40] Grünewald A, Kumar KR, Sue CM. New insights into the complex role of mitochondria in Parkinson’s disease[J]. Prog Neurobiol, 2019, 177: 73-93.
[41] Yao N, Xun QY. Pathology and impact of the locus ceruleus in Parkinson’s disease[J]. Acta Anatomica Sinica, 2014, 45(2): 291-296. (in Chinese)
姚宁, 徐群渊. 蓝斑核在帕金森病发病中的病理改变及其作用[J]. 解剖学报, 2014, 45(2): 291-296.
[42] Mansouri A, Gattolliat CH, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases[J]. Gastroenterology, 2018, 155(3): 629-647.

基金

四川省教育厅自然科学重点项目;泸州市-西南医大战略合作项目

PDF(864 KB)

Accesses

Citation

Detail

段落导航
相关文章

/