稳定内皮和周细胞微管改善脊髓损伤中微循环障碍的作用及其机制

段洋洋 张雅群 柴勇 张璐萍 赵冬梅 杨成

解剖学报 ›› 2021, Vol. 52 ›› Issue (1) : 21-29.

PDF(8469 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(8469 KB)
解剖学报 ›› 2021, Vol. 52 ›› Issue (1) : 21-29. DOI: 10.16098/j.issn.0529-1356.2021.01.003
神经生物学

稳定内皮和周细胞微管改善脊髓损伤中微循环障碍的作用及其机制

  • 段洋洋 张雅群 柴勇 张璐萍 赵冬梅 杨成*
作者信息 +

Role and mechanism of stabilizing microtubules of endothelial cells and pericytes in improving the microvasculature dysfunction after spinal cord injury

  •  DUAN Yang-yang  ZHANG Ya-qun  CHAI Yong  ZHANG Lu-ping  ZHAO Dong-mei  YANG Cheng*
Author information +
文章历史 +

摘要

目的 探讨稳定内皮细胞和周细胞微管改善脊髓损伤(SCI)中微循环障碍的作用及其机制。  方法 培养大鼠脑微血管内皮细胞和周细胞,建立糖氧剥夺(OGD)模型,采用CCK-8法检测细胞活力,采用免疫荧光和Western blotting分别检测α-微管蛋白(α-tubulin)表达;建立脊髓横断损伤模型(n=36),采用免疫荧光检测大鼠内皮细胞抗原1(RECA-1)及血小板衍生生长因子受体β(PDGFRβ)表达,采用Western blotting检测血管内皮生长因子A(VEGFA)、VEGF受体 2(VEGFR2)、血小板衍生生长因子B(PDGFB)、PDGFRβ、血管生成素1(Ang-1)、 特异性酪氨酸激酶受体2(Tie-2)等蛋白表达。  结果 OGD组细胞活性显著低于对照组,且具有时间依赖性;埃博霉素B(Epo B)组细胞活性显著高于OGD组;OGD致微管断裂,且随时间延长断裂愈加明显;Epo B组微管比OGD组趋于稳定,断裂减轻。SCI组RECA-1和PDGFRβ表达水平明显低于假手术组,Epo B治疗组RECA-1和PDGFRβ表达水平显著高于SCI组,VEGFA、VEGFR2、PDGFB、PDGFRβ、Ang-1表达水平明显高于SCI组。  结论 脊髓损伤可导致血管和周细胞减少及微循环障碍,这与细胞微管破坏相关;稳定微管治疗可保护周细胞和微血管,促进微循环重建,建立有利于脊髓损伤修复的微环境。

Abstract

Objective  To explore the role and mechanism of stabilizing microtubules of endothelial cells and pericytes for ameliorating the dysfunction of microvasculature after spinal cord injury(SCI).   Methods  The endothelial cells and pericytes from rat brain microvascular tissue (microvessel) were separated and subjected to glucose oxygen deprivation (OGD). The cell viability was detected by CCK-8 and the expression of α-tubulin was detected by immunofluorescence and Western blotting. Rats (n=36) were subjected to dorsal spinal cord transection at T9-10 vertebra. Expression of rat endothelial cell antigen-1(RECA-1)and platelet-derived growth factor receptor β (PDGFRβ)was localized by immunofluorescence. The expression levels of vascular endothelial growth factor A (VEGFA), VEGF receptor 2 (VEGFR2), platelet-derived growth factor-B (PDGFB), PDGFRβ, angiopoietin-1 (Ang-1) and tyrosine kinase with immunoglobulin-like and epidermal growth factor homology domains(Tie-2)were detected by Western blotting.   Results  The cell viability in OGD group, which was time-dependent, was significantly lower than that of the control group, whereas the cell viability in OGD and epothilone B(Epo B)group(OGD-Epo B group) was significantly higher than that of the OGD group. Rupture of cell microtubules was observed after OGD, and the breakage of microtubules was time-dependent. However, the microtubules in OGD-Epo B group were more stable and less destroyed than those of the OGD group. The expression levels of RECA-1 and PDGFRβ in the SCI group were significantly lower than those of the sham group, and the levels in SCI-Epo B group were significantly higher than those of the SCI group at day 2 and day 7 post injury. Moreover, the expression levels of VEGFA, VEGFR2, PDGFB, PDGFRβ, Ang-1 in SCI-Epo B group were significantly higher than the levels of the SCI group.   Conclusion  The endothelial cells and pericytes of microvessels decrease and the microcirculation is dysfunctional after SCI. This corresponds to the microtubule breakage in the cells. The microvessels and pericytes are protected by stabilization treatment of the microtubules, which promotes microcirculation reconstruction and the SCI recovery.

关键词

微管 / 脊髓损伤 / 微循环重建 / 内皮细胞 / 周细胞 / 免疫荧光;大鼠

Key words

Microtubule / Spinal cord injury / Microcirculation regeneration / Endothelial cell / Pericyte / Immunofluorescence / Rat

引用本文

导出引用
段洋洋 张雅群 柴勇 张璐萍 赵冬梅 杨成. 稳定内皮和周细胞微管改善脊髓损伤中微循环障碍的作用及其机制[J]. 解剖学报. 2021, 52(1): 21-29 https://doi.org/10.16098/j.issn.0529-1356.2021.01.003
DUAN Yang-yang ZHANG Ya-qun CHAI Yong ZHANG Lu-ping ZHAO Dong-mei YANG Cheng. Role and mechanism of stabilizing microtubules of endothelial cells and pericytes in improving the microvasculature dysfunction after spinal cord injury[J]. Acta Anatomica Sinica. 2021, 52(1): 21-29 https://doi.org/10.16098/j.issn.0529-1356.2021.01.003
中图分类号: R744.9   

参考文献

[1] Qiu J. China spinal cord injury network: changes from within [J]. Lancet Neurol, 2009, 8 (7): 606-607.
[2] Varma AK, Das A, Wallace G, et al. Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers [J]. Neurochem Res, 2013, 38 (5): 895-905.
[3] Figley SA, Khosravi R, Legasto JM, et al. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury [J]. J Neurotrauma, 2014, 31 (6): 541-552.
[4] Bayless KJ, Johnson GA. Role of the cytoskeleton in formation and maintenance of angiogenic sprouts [J]. J Vasc Res, 2011, 48 (5): 369-385.
[5] Li F, Sawada J, Komatsu M. R-Ras-Akt axis induces endothelial lumenogenesis and regulates the patency of regenerating vasculature [J]. Nat Commun, 2017, 8 (1): 1720.
[6] Sandner B, Puttagunta R, Motsch M, et al. Systemic epothilone D improves hindlimb function after spinal cord contusion injury in rats [J]. Exp Neurol, 2018, 306: 250-259.
[7] Yan JQ, Dai HM. Review of the R&D and technology innovation of epothilone as new drug [J]. Chinese Journal of New Druds, 2012, 21 (19): 2241-2249.(in Chinese)
阎家麒,戴洪明.埃博霉素新药研发与技术创新初探 [J]. 中国新药杂志, 2012, 21 (19): 2241-2249.
[8] Ruschel J, Hellal F, Flynn KC, et al. Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury [J]. Science, 2015, 348 (6232): 347-352.
[9] de Forges H, Bouissou A, Perez F. Interplay between microtubule dynamics and intracellular organization [J]. Int J Biochem Cell Biol, 2012, 44 (2): 266-274.
[10] Norden PR, Kim DJ, Barry DM, et al. Cdc42 and k-Ras control endothelial tubulogenesis through apical membrane and cytoskeletal polarization: novel stimulatory roles for GTPase effectors, the small GTPases, Rac2 and Rap1b, and inhibitory influence of arhgap31 and rasa1 [J]. PLoS One, 2016, 11 (1): e0147758.
[11] Sobel, A. Stathmin: a relay phosphoprotein for multiple signal transduction  [J]? Trends Biochem Sci, 1991, 16 (8): 301-305.
[12] Hu JY, Chu ZG, Han J, et al. The p38/MAPK pathway regulates microtubule polymerization through phosphorylation of MAP4 and Op18 in hypoxic cells [J]. Cell Mol Life Sci, 2010, 67 (2): 321-333.
[13] Davis GE, Stratman AN, Sacharidoy A, et al. Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting [J]. Int Rev Cell Mol Biol, 2011, 288: 101-165.
[14] Hellstrom M, Gerhardt H, Kalen M, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis [J]. J Cell Biol, 2001, 153 (3): 543-553.
[15] Li Y, LucasOsma AM, Black S, et al. Pericytes impair capillary blood flow and motor function after chronic spinal cord injury [J]. Nat Med, 2017, 23 (6): 733-741.
[16] Duran CL, Howell DW, Dave JM, et al. Molecular regulation of sprouting angiogenesis [J]. Compr Physiol, 2017, 8 (1): 153-235.
[17] Bowers SL, Norden PR, Davis GE. Molecular signaling pathways controlling vascular tube morphogenesis and pericyte-induced tube maturation in 3D extracellular matrices [J]. Adv Pharmacol, 2016, 77: 241-280.
[18] Thomas M, Augustin HG. The role of the angiopoietins in vascular morphogenesis [J]. Angiogenesis, 2009, 12 (2): 125-137.
[19] Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways [J]. Nat Neurosci, 2016, 19 (6): 771-783.
[20] Savant S, La Porta S, Budnik A, et al. The Orphan receptor Tie1 controls angiogenesis and vascular remodeling by differentially regulating Tie2 in tip and stalk cells [J]. Cell Rep, 2015, 12 (11): 1761-1773.

基金

山东省自然科学基金;山东省重点研发计划项目

PDF(8469 KB)

Accesses

Citation

Detail

段落导航
相关文章

/