利用规律间隔成簇短回文重复序列/相关蛋白9系统敲减α2δ1对人肝癌细胞系Hep-12干性的影响

何琦 赵威 张志谦

解剖学报 ›› 2020, Vol. 51 ›› Issue (6) : 882-887.

PDF(4659 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(4659 KB)
解剖学报 ›› 2020, Vol. 51 ›› Issue (6) : 882-887. DOI: 10.16098/j.issn.0529-1356.2020.06.012
肿瘤生物学

利用规律间隔成簇短回文重复序列/相关蛋白9系统敲减α2δ1对人肝癌细胞系Hep-12干性的影响

  • 何琦1 赵威2 张志谦2*
作者信息 +

Suppression of stem cell-like properties of human hepatocellular carcinoma cell line Hep-12 using the clustered regularly interspaced short palindromic repeats/associated protein 9 system

  • HE Qi1 ZHAO Wei2 ZHANG Zhi-qian2*
Author information +
文章历史 +

摘要

目的 通过规律间隔成簇短回文重复序列/相关蛋白9(CRISPR/Cas9)系统敲减人肝癌细胞系Hep12中电压依赖性钙离子通道 α2δ1的表达,观察α2δ1敲减后对肝癌细胞干性的影响。  方法 设计3对靶向α2δ1的向导 (sgRNA),长度为20 bp,构建到lenti CRISPRv2-puro载体上,然后在体外检测sgRNA切割活性,利用慢病毒包装系统包装含有sgRNA的重组质粒,将包装好的病毒感染Hep-12细胞,2 d后加入嘌呤霉素筛选。利用Western blotting验证α2δ1的敲减效果和干性相关基因的表达。通过成球实验检测其体外自我更新能力的变化。  结果  测序结果显示,sgRNA成功插入载体质粒;体外切割实验显示,3条sgRNA均有切割活性;Western blotting结果显示,α2δ1基因的表达显著降低,干性相关基因B细胞特异性莫洛尼白血病病毒插入位点1(BMI1)和Nanog的表达显著被抑制;无血清培养基成球实验结果表明,敲减α2δ1导致Hep-12细胞的体外自我更新能力减弱。  结论  利用CRISPR/Cas9技术成功构建敲除α2δ1基因的Hep-12细胞系;敲除α2δ1基因后能抑制Hep-12细胞肿瘤干细胞样特性。

Abstract

Objective  To investigate the effects of knockdown the expression of the voltage-gated calcium channel α2δ1 subunit on the stem cell-like traits in the tumor-initiating cell enriched Hep-12 hepatocellular carcinoma cell line through clustered regularly interspaced short palindromic repeats/-associated protein 9(CRISPR/Cas9) system.   Methods  Three pairs of single guide RNA (sgRNA) targeting α2δ1 were constructed into the lenti CRISPRv2-puro vector using standard DNA recombinant technique, and their cleavage activities were verified in vitro. The lenti CRISPRv2-puro vector containing the sgRNA sequence was packaged into lentivirus in 293FT cells using the 3rd generation packing system. The viruses were then used to infect Hep-12 cells which were subsequently selected with puromycin. The expression of α2δ1 and stemness related genes were detected by Western blotting, and the in vitro self-renewal capacity was measured by spheroid formation assay.   Results  The designed sgRNAs targeting α2δ1 gene were demonstrated to cleave α2δ1 DNA fragment efficiently in vitro, and the lenti CRISPRv2-puro vectors harboring the corresponding sgRNA sequences were successfully constructed. Compared with that of control cells, the expression of α2δ1 and stem cell associated genes B-cell-specific moloney leukemia virus insertion site 1(BMI1), and Nanog were remarkably suppressed following the infection with the lentivirues harboring sgRNAs against α2δ1 in Hep-12 cells. Furthermore, the in vitro self-renewal ability of Hep-12 cells was retarded significantly as evidenced that the spheroid formation efficiency in serum free medium of these cells reduced dramatically with knockdown of α2δ1.   Conclusion  The voltage-gated calcium channel α2δ1 is essential for the maintanence of the self-renewal properties of the tumor-intiating cell enriched hepatocellular carcinoma Hep12 cells.

关键词

α2δ1 / 规律间隔成簇短回文重复序列/相关蛋白9 / 肝癌干细胞 / 基因敲减 / 自我更新 / 免疫印迹法 / 人 

Key words

α2δ1 / Clustered regularly interspaced short palindromic repeats/associated protein 9 / Liver tumor-initiating cell / Gene knockdown / Self-renewal / Western blotting / Human

引用本文

导出引用
何琦 赵威 张志谦. 利用规律间隔成簇短回文重复序列/相关蛋白9系统敲减α2δ1对人肝癌细胞系Hep-12干性的影响[J]. 解剖学报. 2020, 51(6): 882-887 https://doi.org/10.16098/j.issn.0529-1356.2020.06.012
HE Qi ZHAO Wei ZHANG Zhi-qian. Suppression of stem cell-like properties of human hepatocellular carcinoma cell line Hep-12 using the clustered regularly interspaced short palindromic repeats/associated protein 9 system[J]. Acta Anatomica Sinica. 2020, 51(6): 882-887 https://doi.org/10.16098/j.issn.0529-1356.2020.06.012
中图分类号: R757.7    

参考文献

[1] Musunuru K. Genome editing: the recent history and perspective in cardiovascular diseases[J]. J Am Coll Cardiol, 2017, 70(22): 2808-2821.
[2] Gaj T, Gersbach CA, Barbas CR. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends Biotechnol,2013, 31(7): 397-405.
[3] Porteus MH. Towards a new era in medicine: therapeutic genome editing[J]. Genome Biol, 2015, 16: 286.
[4] Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J Bacteriol,1987, 169(12): 5429-5433.
[5] Cao J, Wei J, Yang P, et al. Genome-scale CRISPR-Cas9 knockout screening in gastrointestinal stromal tumor with Imatinib resistance[J]. Mol Cancer, 2018, 17(1): 121.
[6] Albadri S, Bene FD, Revenu C. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish[J]. Methods, 2017, 121-122: 77-85.
[7] Bruni GO, Zhong K, Lee SC, et al. CRISPR-Cas9 induces point mutation in the mucormycosis fungus Rhizopus delemar[J]. Fungal Genet Biol, 2019, 124: 1-7.
[8] Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin, 2018, 68(6): 394-424
[9] Llovet JM, Montal R, Sia D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2018, 15(10): 599-616.
[10] Alqahtani A, Khan Z, Alloghbi A, et al. Hepatocellular carcinoma: molecular mechanisms and targeted therapies[J]. Medicina (Kaunas), 2019, 55(9): 526.
[11] Dai ChL, Zhao Y. Comprehension treatment for primary liver cancer[J]. Chinese Journal of Bases and Clinics in General Surgery, 2014, 21(2): 133137.(in Chinese)
戴朝六,赵阳. 原发性肝癌的综合治疗[J]. 中国普外基础与临床杂志, 2014, 21(2): 133-137. 
[12] Beck B, Blanpain C. Unravelling cancer stem cell potential[J]. Nat Rev Cancer, 2013, 13(10): 727-738.
[13] Sainz BJ, Heeschen C. Standing out from the crowd: cancer stem cells in hepatocellular carcinoma[J]. Cancer Cell, 2013, 23(4): 431-433.
[14] Chambers I, Colby D, Robertson M, et al. Fucctional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stemcells[J]. Cell, 2003, 113(5): 643-655.
[15] Xu XL, Xing BC, Han HB, et al. The properties of tumor-initiating cells from a hepatocellular carcinoma patient’s primary and recurrent tumor[J]. Carcinogenesis, 2010, 31(2): 167-174.
[16] Chu HW, Rios C, Huang C, et al. CRISPR-Cas9-mediated gene knockout in primary human airway epithelial cells reveals a proinflammatory role for MUC18[J]. Gene Ther, 2015, 22(10): 822-829.
[17] An L, Zeng HM, Zheng RSh, et al. Liver cancer epidemiology in China, 2015[J]. Chinese Journal of Oncology, 2019(10): 721-722.(in Chinese)
安澜,曾红梅,郑荣寿,等. 2015年中国肝癌流行情况分析[J]. 中华肿瘤杂志, 2019(10): 721-722. 
[18] Bertuccio P, Turati F, Carioli G, et al. Global trends and predictions in hepatocellular carcinoma mortality[J]. J Hepatol, 2017, 67(2): 302-309.
[19] Wang N, Wang S, Li MY, et al. Cancer stem cells in hepatocellular carcinoma: an overview and promising therapeutic strategies[J]. Ther Adv Med Oncol, 2018, 10: 17588 35918816287.
[20] Zhao W, Wang L, Han H, et al. 1B50-1, a mAb raised against recurrent tumor cells, targets liver tumor-initiating cells by binding to the calcium channel α2δ1 subunit[J]. Cancer Cell, 2013, 23(4): 541-556.  

PDF(4659 KB)

Accesses

Citation

Detail

段落导航
相关文章

/