枸橼相互作用的丝氨酸/苏氨酸激酶基因调控阿霉素耐药人肝癌细胞系SK-Hep1耐药性的机制

郭丽 赵虹 张俊涛 刘志贞 弓韬 于保锋

解剖学报 ›› 2020, Vol. 51 ›› Issue (5) : 772-777.

PDF(1707 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(1707 KB)
解剖学报 ›› 2020, Vol. 51 ›› Issue (5) : 772-777. DOI: 10.16098/j.issn.0529-1356.2020.05.022
肿瘤生物学

枸橼相互作用的丝氨酸/苏氨酸激酶基因调控阿霉素耐药人肝癌细胞系SK-Hep1耐药性的机制

  • 郭丽1 赵虹2 张俊涛2 刘志贞2 弓韬2 于保锋2*
作者信息 +

Mechanism of citron rho-interacting serine/threonine kinase gene regulating adriamycin resistance in hepatocellular carcinoma cell line SK-Hep1

  • GUO Li1 ZHAO Hong2 ZHANG Jun-tao2 LIU Zhi-zhen2 GONG Tao2 YU Bao-feng2*
Author information +
文章历史 +

摘要

目的 探讨枸橼相互作用的丝氨酸/苏氨酸激酶(CIT)对阿霉素(ADM)耐药肝癌细胞耐药性的调控作用及其机制。  方法 用脂质体将乱序无意义阴性序列(si-NC)、CIT小干扰RNA(si-CIT)转染至耐药细胞;Real-time PCR和Western blotting检测CIT基因、连锁凋亡抑制蛋白(XIAP)、B细胞淋巴瘤蛋白2(Bcl-2)、Bcl-2相关X基因(Bax)、细胞色素C(Cyt C)、磷酸酶基因诱导的假定激酶1(PINK1)、常染色体隐性遗传性青少年帕金森综合征致病基因(Parkin)和自噬微管相关蛋白轻链3抗体Ⅰ/Ⅱ(LC3-Ⅰ/Ⅱ)的表达;细胞计数试剂盒-8(CCK-8)、流式细胞术和荧光探针(JC-10)染色法检测细胞的抑制率、凋亡和线粒体膜电位。  结果 耐药细胞中CIT基因表达高于正常细胞,敲减CIT可增强其对ADM的敏感性。敲减CIT促进耐药细胞凋亡和线粒体自噬能力,抑制细胞线粒体膜电位,并上调细胞Bax、PINK1、Parkin和LC3-I/Ⅱ及胞质中Cyt C,下调细胞中Bcl-2和线粒体中CytC。  结论 CIT 基因可通过线粒体途径的凋亡和自噬调节阿霉素耐药肝癌细胞的耐药性。

Abstract

Objective To investigate the regulatory effect of citron rho-interacting serine/threonine kinase (CIT) on drug resistance of adriamycin (ADM) resistant hepatocellular carcinoma cells and its mechanism.   Methods Random nonsense negative sequence (si-NC), CIT small interfering RNA (si-CIT) trasfected into SK-Hep1/ADM cells with liposomes. Real-time PCR, Western blotting were used to detect the expression of CIT, X linked inhibitor of apoptosis protein (XIAP), B-cell lymphoma protein 2 (Bcl-2), Bcl-2 related X gene (Bax), cytochrome C (Cyt C), phosphatase gene induction putative kinase 1 (PINK1), autosomal recessive adolescent Parkinson’s disease pathogenic gene (Parkin) and autophagy microtubule-associated protein light chain 3 antibody Ⅰ/Ⅱ(LC3-Ⅰ/Ⅱ); Cell counting kit 8(CCK-8), flow cytometry, and fluorescence probe(JC-10) staining were used to detect cell inhibition rate, apoptosis and mitochondrial membrane potential.   Results The expression level of CIT in drug-resistant cells was significantly higher than that in normal cells. Knocking down CIT significantly increased the sensitivity to ADM. Knocking down CIT promoted drug-resistant cell apoptosis and mitochondrial autophagy, down-regulated cell mitochondrial membrane potential, and up-regulated Bax, Cyt C, and PINK1, Parkin,LC3-Ⅰ/Ⅱ, down-regulate XIAP, Bcl-2, Cyt C.   Conclusion CIT gene could regulate the drug resistance of adriamycin  resistant HCC cells through mitochondrial pathway apoptosis and autophagy.

关键词

枸椽相互作用的丝氨酸/苏氨酸激酶 / 阿霉素耐药肝癌细胞 / 线粒体 / 自噬 / 免疫印迹法

Key words

Citron rho-interacting serine/threonine kinase / Adriamycin-resistant hepatic carcinoma cells / Mitochondria / Autophagy / Western blotting

引用本文

导出引用
郭丽 赵虹 张俊涛 刘志贞 弓韬 于保锋. 枸橼相互作用的丝氨酸/苏氨酸激酶基因调控阿霉素耐药人肝癌细胞系SK-Hep1耐药性的机制[J]. 解剖学报. 2020, 51(5): 772-777 https://doi.org/10.16098/j.issn.0529-1356.2020.05.022
GUO Li ZHAO Hong ZHANG Jun-tao LIU Zhi-zhen GONG Tao YU Bao-feng. Mechanism of citron rho-interacting serine/threonine kinase gene regulating adriamycin resistance in hepatocellular carcinoma cell line SK-Hep1[J]. Acta Anatomica Sinica. 2020, 51(5): 772-777 https://doi.org/10.16098/j.issn.0529-1356.2020.05.022
中图分类号: R735.7    

参考文献

[1] Massarweh NN, El Serag HB. Epidemiology of hepatocellular carcinoma and intrahepatic cholangiocarcinoma[J]. Cancer Control, 2017, 24(3): 1073274817729245.
[2] Hartke J, Johnson M, Ghabril M. The diagnosis and treatment of hepatocellular carcinoma[J]. Semin Diagn Pathol, 2017, 34(2): 153-159.
[3] Wen S, Liu Y, Yang M, et al. Increased NEK2 in hepatocellular carcinoma promotes cancer progression and drug resistance by promoting PP1/Akt and Wnt activation[J]. Oncol Rep, 2016, 36(4): 2193-2199.
[4] Tricoli L, Niture S, Chimeh U, et al. Role of microRNAs in the development of hepatocellular carcinoma and drug resistance[J]. Front Biosci (Landmark Ed), 2019, 24(1): 382-391.
[5] Shaheen R, Hashem A, AbdelSalam GM, et al. Mutations in CIT, encoding citron rhointeracting serine/threonine kinase, cause severe primary microcephaly in humans[J]. Hum Genet, 2016, 135(10): 11911197.
[6] Sahin I, Kawano Y, SklavenitisPistofidis R, et al. Citron Rho-interacting kinase silencing causes cytokinesis failure and reduces tumor growth in multiple myeloma[J]. Blood Adv, 2019, 3(7): 995-1002.
[7] Meng D, Yu Q, Feng L, et al. Citron kinase (CIT-K) promotes aggressiveness and tumorigenesis of breast cancer cells in vitro and in vivo: preliminary study of the underlying mechanism[J]. Clin Transl Oncol, 2019, 21(7): 910-923.
[8] Praharaj PP, Naik PP, Panigrahi DP, et al. Intricate role of mitochondrial lipid in mitophagy and mitochondrial apoptosis: its implication in cancer therapeutics[J]. Cell Mol Life Sci, 2019, 76(9): 1641-1652.
[9] Chen HP, Xiang Q, Liu DW, et al. CIT gene silencing can inhibit the proliferation and metastasis of prostate cancer cells [J]. Journal of Southern Medical University, 2019, 39 (3):7-13.(in Chinese)
陈海平, 向玘, 刘大伟, 等. 沉默CIT基因可抑制前列腺癌细胞的增殖和转移(英文)[J]. 南方医科大学学报, 2019,39(3):7-13.
[10] Xiang XH, Yang L, Zhang X, et al. Seven-senescence-associated gene signature predicts overall survival for Asian patients with hepatocellular carcinoma[J]. World J Gastroenterol, 2019, 25(14): 1715-1728.
[11] Huang GL, Feng WW, Huang ZS, et al. Effects of matrine on drug resistance of drug-resistant HCC cell line HepG2/ADM chemotherapy through mitochondrial apoptosis pathway [J]. Chinese Journal of Hepatology, 2019, 27(3):216-218. (in Chinese)
黄桂柳, 冯巍巍, 黄赞松, 等. 苦参素通过线粒体凋亡通路影响肝癌耐药细胞株HepG2/ADM化学治疗的耐药性[J]. 中华肝脏病杂志, 2019, 27(3):216-218.]
[12] Fu Y, Huang J, Wang KS, et al. RNA interference targeting CITRON can significantly inhibit the proliferation of hepatocellular carcinoma cells[J]. Mol Biol Rep, 2011, 38(2): 693-702.
[13] Sun H, Cui C, Xiao F, et al. miR-486 regulates metastasis and chemosensitivity in hepatocellular carcinoma by targeting CLDN10 and CITRON[J]. Hepatol Res, 2015, 45(12): 1312-1322.
[14] Hu Y, Liu Q, Zhou XF, et al. Screening of CIT gene siRNA interference sequence and its inhibitory expression in liver cancer sk-hep-1 [J]. Chinese Journal of Liver Diseases, 2019, 27(4): 281-285. (in Chinese)
胡月, 刘杞, 周晓芳, 等. CIT基因siRNA干扰序列的筛选及其在肝癌SK-Hep-1中的抑制表达[J]. 中国肝脏病杂志, 2019, 27(4): 281-285.
[15] Wang XQ, Li RP, Sun YZh, et al. Chronic cold exposure and changes in mitochondrial number [J]. Acta Anatomica Sinica, 2017, 48(3): 254-259. (in Chinese)
王小青, 李瑞萍, 孙仪征, 等.慢性寒冷暴露与线粒体数量改变[J]. 解剖学报, 2017, 48(3): 254-259.
[16] Cui Q, Wen S, Huang P. Targeting cancer cell mitochondria as a therapeutic approach: recent updates[J]. Future Med Chem, 2017, 9(9): 929-949.
[17] Guerra F, Arbini AA, Moro L. Mitochondria and cancer chemoresistance [J]. Biochim Biophys Acta Bioenerg, 2017, 1858(8): 686-699.
[18] Yan C, Li TS. Dual role of mitophagy in cancer drug resistance[J]. Anticancer Res, 2018, 38(2): 617-621.
[19] Altieri DC. Mitochondria on the move: emerging paradigms of organelle trafficking in tumour plasticity and metastasis[J]. Br J Cancer, 2017, 117(3): 301-305.
[20] Yan B, Dong L, Neuzil J. Mitochondria: an intriguing target for killing tumour-initiating cells[J]. Mitochondrion, 2016, 26(1): 86-93.
[21] Idelchik MDPS, Begley U, Begley TJ, et al. Mitochondrial ROS control of cancer[J]. Semin Cancer Biol, 2017, 47(12): 57-66.

基金

山西省重点研发计划项目;山西省青年科技研究基金

PDF(1707 KB)

Accesses

Citation

Detail

段落导航
相关文章

/