受体相互作用蛋白激酶调控非酒精性脂肪肝中细胞程序性坏死的研究进展 

郭翼宁 范祺 张卫光

解剖学报 ›› 2020, Vol. 51 ›› Issue (4) : 626-630.

PDF(835 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(835 KB)
解剖学报 ›› 2020, Vol. 51 ›› Issue (4) : 626-630. DOI: 10.16098/j.issn.0529-1356.2020.04.025
综述

受体相互作用蛋白激酶调控非酒精性脂肪肝中细胞程序性坏死的研究进展 

  • 郭翼宁 范祺 张卫光*
作者信息 +

Research progress on receptor interacting protein kinase regulated necroptosis in nonalcoholic fatty liver disease

  • GUO Yi-ning FAN Qi ZHANG Wei-guang*
Author information +
文章历史 +

摘要

非酒精性脂肪性肝病(NAFLD)是一种常见的慢性肝病,如果得不到有效控制,则会进一步发展为非酒精性脂肪性肝炎(NASH),进而引起肝纤维化、肝硬化,甚至癌变。程序性坏死是近年来发现的一种新型细胞程序性死亡方式,由受体相互作用蛋白激酶(RIPK)介导所致,最终可以导致细胞膜溶解破裂,引发炎症。RIPK家族作为细胞内和细胞外应激的重要传感器,诱导调控程序性坏死的发生,并参与炎症及其他免疫反应。近年来研究表明,RIPK调控的程序性坏死在非酒精性脂肪性肝病的发生发展中具有重要作用,在动物NAFLD/NASH模型中,RIPK的表达情况与肝脂肪变性程度密切相关。在一些临床研究中亦观察到,NAFLD/NASH患者比健康人RIPK表达水平上升。但程序性坏死到底是加速肝病进程的因素,还是肝病发展过程中的保护因素,仍然没有定论。有研究表明,RIPK抑制剂可能为NAFLD治疗提供方向。我们综述了程序性坏死的分子机制及与非酒精性脂肪性肝病的关系,以及RIPK在其中扮演的重要角色,并总结了其在NAFLD/NASH治疗方面的研究进展,为进一步探究其机制,探索新的治疗手段提供理论依据。

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease, which might develop into nonalcoholic steatohepatitis (NASH), liver cirrhosis and even carcinoma without effective management. Necroptosis mediated by receptor interacting protein kinase (RIPK) is a novel type of programmed cell death discovered in recent years, which can eventually lead to cell membrane lysis and inflammation. As an important sensor of intracellular and extracellular stress, the RIPK family induces and regulates the activation of necroptosis, and is involved in inflammation and other immune responses. In recent years, studies have shown that RIPK-regulated necroptosis plays an important role in the development of NAFLD. In animal NAFLD/NASH model, the expression of RIPK is related to the degree of hepatic steatosis. In some clinical studies, it was also observed that RIPK expression levels were elevated in NAFLD/NASH patients compared with healthy controls. However, whether necroptosis is a factor which a celerates the progression of liver disease, or a protective factor in the development of liver disease, is still inconclusive. Some studies have shown that RIPK inhibitors may provide guidance for NAFLD treatment. This review provides the molecular mechanisms of necroptosis and its relationship with NAFLD, introduces the important role of RIPK, and summarizes its research progress in the treatment of NAFLD, providing a theoretical basis for further exploration of its mechanism and new treatments for NAFLD.

关键词

非酒精性脂肪肝病 / 非酒精性脂肪性肝炎 / 程序性坏死 / 受体相互作用蛋白激酶

Key words

Nonalcoholic fatty liver disease / Nonalcoholic steatohepatitis / Necroptosis / Receptor interacting protein kinase

引用本文

导出引用
郭翼宁 范祺 张卫光. 受体相互作用蛋白激酶调控非酒精性脂肪肝中细胞程序性坏死的研究进展 [J]. 解剖学报. 2020, 51(4): 626-630 https://doi.org/10.16098/j.issn.0529-1356.2020.04.025
GUO Yi-ning FAN Qi ZHANG Wei-guang. Research progress on receptor interacting protein kinase regulated necroptosis in nonalcoholic fatty liver disease[J]. Acta Anatomica Sinica. 2020, 51(4): 626-630 https://doi.org/10.16098/j.issn.0529-1356.2020.04.025
中图分类号: Q291    

参考文献

[1] Fingas C D, Best J, Sowa J P, et al. Epidemiology of nonalcoholic steatohepatitis and hepatocellular carcinoma [J]. Clinical Liver Disease, 2016, 8(5): 119-122.
[2] Wong V W S, Chan W K, Chitturi S, et al. Asia-Pacific Working Party on Non-alcoholic Fatty Liver Disease guidelines 2017 [J]. Journal of Gastroenterology and Hepatology, 2018, 33(1): 70-85.
[3] Beier J I, Banales J M. Pyroptosis: An inflammatory link between NAFLD and NASH with potential therapeutic implications [J]. Journal of Hepatology, 2018, 68(4): 643-645.
[4] Schwabe R F, Luedde T. Apoptosis and necroptosis in the liver: a matter of life and death [J]. Nature Reviews Gastroenterology & Hepatology, 2018, 15(12): 738-752.
[5] He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha [J]. Cell, 2009, 137(6): 1100-1111.
[6] Welz P S, Wullaert A, Vlantis K, et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation [J]. Nature, 2011, 477(7364): 330-334.
[7] Bonnet M C, Preukschat D, Welz P S, et al. The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation [J]. Immunity, 2011, 35(4): 572-582.
[8] Zhang D, Lin J, Han J. Receptor-interacting protein (RIP) kinase family [J]. Cellular & molecular immunology, 2010, 7(4): 243-249.
[9] McCarthy J V, Ni J, Dixit V M. RIP2 is a novel NF-kappaB-activating and cell death-inducing kinase [J]. J Biol Chem, 1998, 273(27): 16968-16975.
[10] Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology [J]. Neuron, 2004, 44(4): 601-607.
[11] Greggio E, Lewis P A, van der Brug M P, et al. Mutations in LRRK2/dardarin associated with Parkinson disease are more toxic than equivalent mutations in the homologous kinase LRRK1 [J]. Journal of Neurochemistry, 2007, 102(1): 93-102.
[12] Wen L, Zhuang L, Luo X, et al. TL1A-induced NF-kappaB activation and c-IAP2 production prevent DR3-mediated apoptosis in TF-1 cells [J]. J Biol Chem, 2003, 278(40): 39251-39258.
[13] Feng S, Ma L, Yang Y, et al. Truncated RIP3 (tRIP3) acts upstream of FADD to induce apoptosis in the human hepatocellular carcinoma cell line QGY-7703 [J]. Biochem Biophys Res Commun, 2006, 347(3): 558-565.
[14] Morgan M J, Kim Y S. The serine threonine kinase RIP3: lost and found [J]. BMB Rep, 2015, 48(6): 303-312.
[15] Granger G A, Kolb W P. Lymphocyte in vitro cytotoxicity: mechanisms of immune and non-immune small lymphocyte mediated target L cell destruction [J]. J Immunol, 1968, 101(1): 111-120.
[16] Wu J F, Huang Z, Ren J M, et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis [J]. Cell Research, 2013, 23(8): 994-1006.
[17] O'Donnell M A, Perez-Jimenez E, Oberst A, et al. Caspase 8 inhibits programmed necrosis by processing CYLD [J]. Nature Cell Biology, 2011, 13(12): 1437-U1132.
[18] Wallach D, Kang T B, Dillon C P, et al. Programmed necrosis in inflammation: Toward identification of the effector molecules [J]. Science, 2016, 352(6281): aaf2154.
[19] Kaczmarek A, Vandenabeele P, Krysko D V. Necroptosis: The Release of Damage-Associated Molecular Patterns and Its Physiological Relevance [J]. Immunity, 2013, 38(2): 209-223.
[20] Afonso M B, Rodrigues P M, Carvalho T, et al. Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis [J]. Clin Sci (Lond), 2015, 129(8): 721-739.
[21] Gautheron J, Vucur M, Reisinger F, et al. A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis [J]. EMBO Mol Med, 2014, 6(8): 1062-1074.
[22] Saeed W K, Jun D W, Jang K, et al. Mismatched effects of receptor interacting protein kinase-3 on hepatic steatosis and inflammation in non-alcoholic fatty liver disease [J]. WORLD JOURNAL OF GASTROENTEROLOGY, 2018, 24(48): 5477-5490.
[23] 续畅, 刘泽洲, 许可嘉, 等. 高脂及MCD饮食诱导非酒精性脂肪性肝炎动物模型的比较 [J]. 现代生物医学进展, 2014, 14(18): 3451-3455.
[24] Lee G S, Yan J S, Ng R K, et al. Polyunsaturated fat in the methionine-choline-deficient diet influences hepatic inflammation but not hepatocellular injury [J]. J Lipid Res, 2007, 48(8): 1885-1896.
[25] Hatsugai K , Ohkohchi N , Fukumori T , et al. Mechanism of primary graft non-function in a rat model for fatty liver transplantation[J].Transpl Int, 2000, 13(1 Supplement):S583-S590.
[26] Gautheron J, Vucur M, Luedde T. Necroptosis in Nonalcoholic Steatohepatitis [J]. Cell Mol Gastroenterol Hepatol, 2015, 1(3): 264-265.
[27] Vandenabeele P, Grootjans S, Callewaert N, et al. Necrostatin-1 blocks both RIPK1 and IDO: consequences for the study of cell death in experimental disease models [J]. Cell Death and Differentiation, 2013, 20(2): 185-187.
[28] Northington F J, Chavez-Valdez R, Graham E M, et al. Necrostatin decreases oxidative damage, inflammation, and injury after neonatal HI [J]. Journal of Cerebral Blood Flow and Metabolism, 2011, 31(1): 178-189.
[29] Chavez-Valdez R, Martin L J, Flock D L, et al. Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia–ischemia [J]. Neuroscience, 2012, 219(1): 192-203.
[30] Smith C C T, Davidson S M, Lim S Y, et al. Necrostatin: A potentially novel cardioprotective agent? [J]. Cardiovascular Drugs and Therapy, 2007, 21(4): 227-233.
[31] Linkermann A, Brasen J H, Himmerkus N, et al. Rip1 (Receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury [J]. Kidney International, 2012, 81(8): 751-761.
[32] Oerlemans M, Liu J, Arslan F, et al. Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo [J]. Basic Research in Cardiology, 2012, 107(4): 270-270.
[33] Kaiser W J, Upton J W, Long A B, et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice [J]. Nature, 2011, 471(7338): 368-372.
[34] Saeed W K, Jun D W. Necroptosis: an emerging type of cell death in liver diseases [J]. World J Gastroenterol, 2014, 20(35): 12526-12532.
[35] Marra F, Tacke F. Roles for Chemokines in Liver Disease [J]. Gastroenterology, 2014, 147(3): 577-594.e571.
[36] Miura K, Yang L, van Rooijen N, et al. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2 [J]. American Journal of Physiology - Gastrointestinal and Liver Physiology, 2012, 302(11): G1310-G1321.

基金

北京市自然科学基金

PDF(835 KB)

Accesses

Citation

Detail

段落导航
相关文章

/