动脉瘤性蛛网膜下腔出血后神经元损伤机制的研究进展

谢江淼 杨晓梅

解剖学报 ›› 2020, Vol. 51 ›› Issue (4) : 618-625.

PDF(974 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(974 KB)
解剖学报 ›› 2020, Vol. 51 ›› Issue (4) : 618-625. DOI: 10.16098/j.issn.0529-1356.2020.04.024
综述

动脉瘤性蛛网膜下腔出血后神经元损伤机制的研究进展

  • 谢江淼 杨晓梅* 
作者信息 +

Recent progress of the neural injury mechanism after aneurysmal subarachnoid hemorrhage

  • XIE Jiang-miao YANG Xiao-mei*
Author information +
文章历史 +

摘要

动脉瘤性蛛网膜下腔出血(aSAH)是脑卒中最严重的表现形式之一。颅内动脉瘤破裂后血液瘀滞在脑蛛网膜下腔,引起多种病理生理改变,包括脑积水、细胞凋亡、血脑屏障功能障碍、血管痉挛、微血栓形成和皮层扩散性抑制,这些机制相互作用并贯穿于整个脑损伤过程。近年来,临床试验逐渐关注aSAH发生后的两个阶段:早期脑损伤(EBI)和延迟性脑缺血(DCI)。这两个时期是导致神经元损伤的主要阶段,并与患者的预后密切相关。我们就近年来蛛网膜下腔出血后脑损伤的机制作一简要总结,主要讨论EBI和DCI在神经损伤中的作用。

Abstract

Aneurysmal subarachnoid hemorrhage (aSAH) is one of the most devastating form of stroke. Many physiopathology mechanisms ensue after cerebral aneurysm rupture with blood silting up in the subarachnoid space, including hydrocephalus, cell apoptosis, blood-brain barrier dysfunction, macrovascular vasospasm, microthrombosis and cortical spreading depolarization which interact with each other and work throughout the damage process. Recently, clinical trials gradually pay more attention to two phases of injury after aSAH: the early phase known as early brain injury (EBI) and the delayed phase, delayed cerebral ischemia (DCI). These two phases are main processes accounting for neural injury and are thought to be closely linked with the outcomes of the patients. This review makes a brief summary on the mechanism of cerebral injury after aSAH, mostly on EBI and DCI.

关键词

动脉瘤性蛛网膜下腔出血 / 早期脑损伤 / 延迟性脑缺血 / 神经炎症 / 脑血管痉挛

Key words

Aneurysmal subarachnoid hemorrhage / Early brain injury / Delayed cerebral ischemia / Neuroinflammation / Cerebral vasospasm

引用本文

导出引用
谢江淼 杨晓梅. 动脉瘤性蛛网膜下腔出血后神经元损伤机制的研究进展[J]. 解剖学报. 2020, 51(4): 618-625 https://doi.org/10.16098/j.issn.0529-1356.2020.04.024
XIE Jiang-miao YANG Xiao-mei. Recent progress of the neural injury mechanism after aneurysmal subarachnoid hemorrhage[J]. Acta Anatomica Sinica. 2020, 51(4): 618-625 https://doi.org/10.16098/j.issn.0529-1356.2020.04.024
中图分类号: R743.35    

参考文献

[1] van Lieshout JH, Dibue-Adjei M, Cornelius JF, et al. An introduction to the pathophysiology of aneurysmal subarachnoid hemorrhage [J]. Neurosurg Rev, 2018, 41(4):917-930.
[2] Serrone JC, Maekawa H, Tjahjadi M, et al. Aneurysmal subarachnoid hemorrhage: pathobiology, current treatment and future directions[J]. Expert Rev Neurother, 2015,15(4):367-380.
[3] Edjlali M, Rodriguez-Regent C, Hodel J, et al. Subarachnoid hemorrhage in ten questions[J]. Diagn Interv Imaging, 2015,96(78):657-666.
[4] Penn DL, Witte SR, Komotar RJ, et al. Pathological mechanisms underlying aneurysmal subarachnoid haemorrhage and vasospasm[J]. J Clin Neurosci, 2015,22(1):1-5.
[5] Lawton MT, Vates GE. Subarachnoid Hemorrhage [J]. N Engl J Med, 2017,377(3):257-266.
[6] Macdonald RL, Diringer MN, Citerio G. Understanding the disease: aneurysmal subarachnoid hemorrhage[J]. Intensive Care Med, 2014,40(12):1940-1943.
[7] Suzuki H. What is early brain injury [J]? Transl Stroke Res, 2015, 6(1):1-3.
[8] Fontana J, Moratin J, Ehrlich G, et al. Dynamic autoregulatory response after aneurysmal subarachnoid hemorrhage and its relation to angiographic vasospasm and clinical outcome[J]. Neurocrit Care, 2015, 23(3):355-363.
[9] Balbi M, Koide M, Schwarzmaier SM, et al. Acute changes in neurovascular reactivity after subarachnoid hemorrhage in vivo[J]. J Cereb Blood Flow Metab, 2017, 37(1):178-187.
[10] Scholler K, Trinkl A, Klopotowski M, et al. Characterization of microvascular basal lamina damage and bloodbrain barrier dysfunction following subarachnoid hemorrhage in rats [J]. Brain Res, 2007, 1142:237-246.
[11] Chen S, Luo J, Reis C, et al. Hydrocephalus after subarachnoid hemorrhage: pathophysiology, diagnosis, and treatment[J]. Biomed Res Int, 2017, 2017:8584753.
[12] Li Z, Liang G, Ma T, et al. Blood-brain barrier permeability change and regulation mechanism after subarachnoid hemorrhage[J]. Metab Brain Dis, 2015,30(2):597-603.
[13] Hayman EG, Wessell A, Gerzanich V, et al. Mechanisms of global cerebral edema formation in aneurysmal subarachnoid hemorrhage[J]. Neurocrit Care, 2017, 26(2):301-310.
[14] Yuksel S, Tosun YB, Cahill J, et al. Early brain injury following aneurysmal subarachnoid hemorrhage: emphasis on cellular apoptosis [J]. Turk Neurosurg, 2012, 22(5):529-533.
[15] Li H, Yu JS, Zhang HS, et al. Increased expression of Caspase-12 after experimental subarachnoid hemorrhage [J]. Neurohem Res, 2016, 41(12):3407-3416.
[16] Miller BA, Turan N, Chau M, et al. Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage[J]. Biomed Res Int, 2014, 2014:384342.
[17] Lucke-Wold BP, Logsdon AF, Manoranjan B, et al. Aneurysmal subarachnoid hemorrhage and neuroinflammation: a comprehensive review[J]. Int J Mol Sci, 2016, 17(4):497.
[18] Nogueira AB, Nogueira AB, Esteves Veiga JC, et al. Multimodality monitoring, inflammation, and neuroregeneration in subarachnoid hemorrhage[J]. Neurosurgery, 2014, 75(6):678-689.
[19] Farooqui AA. n-3 fatty acid-derived lipid mediators in the brain: new weapons against oxidative stress and inflammation [J]. Curr Med Chem, 2012, 19(4):532-543.
[20] Garcia JM, Stillings SA, Leclerc JL, et al. Role of interleukin-10 in acute brain injuries[J]. Front Neurol, 2017, 8:244.
[21] Geraghty JR, Testai FD. Delayed cerebral ischemia after subarachnoid hemorrhage: beyond vasospasm and towards a multifactorial pathophysiology[J]. Curr Atheroscler Rep, 2017, 19(12):50.
[22] Drazin D, Fennell VS, Gifford E, et al. Safety and outcomes of simultaneous vasospasm and endovascular aneurysm treatment (SVAT) in subarachnoid hemorrhage[J]. J Neurointerv Surg, 2017, 9(5):482-485.
[23] Yousef KM, Balzer JR, Bender CM, et al. Cerebral perfusion pressure and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage[J]. Am J Crit Care, 2015,24(4):e65-e71.
[24] Ciurea AV, Palade C, Voinescu D, et al. Subarachnoid hemorrhage and cerebral vasospasm-literature review[J]. J Med Life, 2013,6(2):120-125.
[25] Huang Q, Wang G, Hu YL, et al. Study on the expression and mechanism of inflammatory factors in the brain of rats with cerebral vasospasm[J]. Eur Rev Med Pharmacol Sci, 2017,21(12):2887-2894.
[26] Connolly ES, Rabinstein AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association[J]. Stroke, 2012,43(6):1711-1737.
[27] Santos-Teles AG, Passos RH, Panerai RB, et al. Intravenous administration of milrinone, as an alternative approach to treat vasospasm in subarachnoid hemorrhage: a case report of transcranial doppler monitoring[J]. Clin Case Rep, 2019,7(4):648-652.
[28] Frontera JA, Provencio JJ, Sehba FA, et al. The role of platelet activation and inflammation in early brain injury following subarachnoid hemorrhage[J]. Neurocrit Care, 2017,26(1):48-57.
[29] Lin CL, Dumont AS, Zhang JH, et al. Cerebral vasospasm after aneurysmal subarachnoid hemorrhage: mechanism and therapies[J]. Biomed Res Int, 2014,2014:679014.
[30] Guvenc Tuna B, Lachkar N, de Vos J, et al. Cerebral artery remodeling in rodent models of subarachnoid hemorrhage[J]. J Vasc Res, 2015,52(2):103-115.
[31] McConnell ED, Wei HS, Reitz KM, et al. Cerebral microcirculatory failure after subarachnoid hemorrhage is reversed by hyaluronidase[J]. J Cereb Blood Flow Metab, 2016,36(9):1537-1552.
[32] Sangeetha RP, Ramesh VJ, Kamath S, et al. Effect of remote ischemic preconditioning on cerebral vasospasm and biomarkers of cerebral ischemia in aneurysmal subarachnoid hemorrhage (ERVAS): a protocol for a randomized, controlled pilot trial[J]. Brain Circ, 2019,5(1):12-18.
[33] D’Souza S. Aneurysmal subarachnoid hemorrhage[J]. J Neurosurg Anesthesiol, 2015, 27 (3): 222-240.
[34] Ayata C, Lauritzen M. Spreading depression, spreading depolarizations, and the cerebral vasculature [J]. Physiol Rev, 2015,95(3):953-993.
[35] Hartings JA, Shuttleworth CW, Kirov SA, et al. The continuum of spreading depolarizations in acute cortical lesion development: examining leao’s legacy[J]. J Cereb Blood Flow Metab, 2017, 37(5):1571-1594.
[36] Foreman B. The pathophysiology of delayed cerebral ischemia[J]. J Clin Neurophysiol, 2016,33(3):174-182.
[37] Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease[J]. Nat Med, 2011,17(4):439-447.
[38] Oka F, Hoffmann U, Lee JH, et al. Requisite ischemia for spreading depolarization occurrence after subarachnoid hemorrhage in rodents[J]. J Cereb Blood Flow Metab, 2017,37(5):1829-1840.
[39] Wainsztein N, Rodriguez Lucci F. Cortical Spreading depression and ischemia in neurocritical patients[J]. Neurol Clin, 2017,35(4):655-664.
[40] Chung DY, Oka F, Ayata C. Spreading depolarizations: a therapeutic target against delayed cerebral ischemia after subarachnoid hemorrhage[J]. J Clin Neurophysiol, 2016, 33(3): 196-202.

基金

国家自然科学基金青年基金

PDF(974 KB)

Accesses

Citation

Detail

段落导航
相关文章

/