局灶性脑缺血后125Ⅰ-神经生长因子对血脑屏障的通透性

曾倩 马新宇 曹中伟

解剖学报 ›› 2020, Vol. 51 ›› Issue (3) : 344-351.

PDF(6808 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(6808 KB)
解剖学报 ›› 2020, Vol. 51 ›› Issue (3) : 344-351. DOI: 10.16098/j.issn.0529-1356.2020.03.006
神经生物学

局灶性脑缺血后125Ⅰ-神经生长因子对血脑屏障的通透性

  • 曾倩1 马新宇2 曹中伟2*
作者信息 +

Permeability to bloodbrain burrier of 125Ⅰ-nerve growth factor after focal cerebral ischemia#br#

  • ZHENG Qian1 MA Xin-yu2 CAO Zhong-wei2*
Author information +
文章历史 +

摘要

目的 通过大鼠局灶性脑缺血实验,探讨神经生长因子(NGF)在大脑局部脑缺血情况下通过血脑屏障(BBB)的最佳时间及机制,为NGF在临床上的应用提供新的用药途径。 方法  对65只健康雄性SD大鼠采用改良的线栓法制备局灶性脑缺血模型,按缺血后不同时间点,给予每只大鼠注入125 Ⅰ-NGF,利用γ射线计数仪检测γ计数量,观察缺血不同时间BBB通透性的改变。脑缺血后BBB通透性最大的时间点(缺血3 d)大鼠为实验组(15只),不制造脑缺血动物为对照组(15只)。对大鼠行脑冠状切片,通过放射自显影观察成影部位、面积及亮度。利用透射电子显微镜观察脑缺血不同时间BBB的变化。  结果  随脑缺血时间延长,BBB通透性逐渐增加,其中脑缺血后第3天BBB通透性最大,而后又逐渐减弱。在BBB相同通透性情况下,γ计数显示,伴随用药时间的延长对照组和实验组γ计数均有所增加,实验组各时间点γ计数高于对照组,两组比较差异均有显著性(P<0.05),以用药 4 h γ计数最高。放射自显影结果显示,对照组给药1 h整个大脑不显影,4 h及7h脑室及室周脑组织显影,面积约占脑冠状切面的4.1%,亮度明显;实验组给药1 h右侧大脑表面显影,面积约占脑冠状切面的6%,亮度较强,4 h及7h除了脑室及室周脑组织显影外,在右侧脑额叶(FL)、顶叶(AL)和颞叶皮质和髓质中有大面积显影,面积占脑冠状切面的36.2%~47.3%,亮度很强。 结论 随着大鼠脑缺血时间延长BBB通透性增加,其中缺血3 d通透性最强;大鼠局灶脑缺血3 d用药4 h 125Ⅰ-NGF进入BBB量最大,在额叶、顶叶及颞叶显影最明显。NGF能通过局灶性脑缺血的血脑屏障,可能为临床给药途径提出新思路。

Abstract

Objective  To investigate the optimal time and mechanism of nerve growth factor(NGF)crossing the bloodbrain barrier (BBB) under cerebral ischemia in rats through focal cerebral ischemia experiments in rats, and to provide a new way for the clinical application of NGF.   Methods  A total of 65 healthy Sprague-Dawlay (SD) male rats were prepared by using a modified suture method  to prepare focal cerebral ischemia models. Rats were injected with 125Ⅰ-NGF, and the γ count was measured with a γ-ray counter to observe the changes in BBB permeability at different times of ischemia. At the time point at which BBB permeability was greatest after cerebral ischemia (3 days ischemia), the rats were used as the experimental group (n=15). Coronal sections of the rats were subjected to autoradiography, and the imaging site, area and brightness were observed. The changes of blood-brain barrier at different times of cerebral ischemia with transmission electron microscope were observed.   Results  With the prolongation of cerebral ischemia time, the permeability of BBB increased gradually, and the permeability of BBB was the largest after 3 days of cerebral ischemia, and then weakened gradually. With the same permeability of BBB, the γ count showed that the γ counts of the control group and the experimental group increased with the prolonged medication time. The γ counts of the experimental group at each time point were higher than the control group. Significant difference (P<0.05) was found, and the highest γ count at 4 hours. The result  of autoradiography showed that the entire brain was not developed in the control group for 1 hour, and the ventricles and periventricular brain tissues were developed in 4 hours and 7 hours. The area occupied about 4.1% of the cerebral coronal section, and the brightness was obvious. The area was about 6% of the coronal section of the brain, and the brightness was strong. In addition to the development of the ventricles and periventricular brain tissues at 4 hours and 7 hours, in the right frontal lobe (FL), parietal lobe (AL) and temporal lobe, there was a large area in the medulla and the medulla, which covered 36.2% to 47.3% of the coronal section of the brain. The brightness was very strong.   Conclusion  BBB permeability increases with prolonged cerebral ischemia in rats, of which the permeability is the strongest at 3 days of ischemia; rats with focal cerebral ischemia at 3 days for 4 hours, 125Ⅰ-NGF enters the BBB in the largest amount, in the frontal and parietal. The temporal lobe is most obvious. NGF can pass the blood-brain barrier of focal cerebral ischemia and may become a new breakthrough in clinical drug delivery.

关键词

局灶性脑缺血 / 血脑屏障 / 神经生长因子 / 改良线栓法 / 放射自显影 / 透射电子显微术 / 大鼠

Key words

Focal cerebral ischemia / Blood-brain barrier / Nerve growth factor / Reforming longa method / Autoradiography / Transmission electron microscopy / Rat

引用本文

导出引用
曾倩 马新宇 曹中伟. 局灶性脑缺血后125Ⅰ-神经生长因子对血脑屏障的通透性[J]. 解剖学报. 2020, 51(3): 344-351 https://doi.org/10.16098/j.issn.0529-1356.2020.03.006
ZHENG Qian MA Xin-yu CAO Zhong-wei. Permeability to bloodbrain burrier of 125Ⅰ-nerve growth factor after focal cerebral ischemia#br#[J]. Acta Anatomica Sinica. 2020, 51(3): 344-351 https://doi.org/10.16098/j.issn.0529-1356.2020.03.006
中图分类号: R743   

参考文献

[1] Schabitz UR, Sommer C, Zoder W, et al intravenous BDNF reduces infaret size and counlerregulates Bax and Bel-2 expression after temporary focal cerebral ischemia[J].Stroke,  2003,31(9):2212-2217.
[2] Levi MR. The nerve growth factor 35 years later [J].Science, 2011, 237 (4819):1154-1162.
[3] Chiaretti A, Falsini B, Aloe L, et al. Neuroprotective role of nerve growth factor in hypoxic ischemic injury[J]. Arch Ital Biol, 2011, 149(2):275-282.
[4] Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 2011, 20(1):84-91.
[5] Luo Y, Dong WW.  Experimental study on focal cerebral ischemia/reperfusion model by Wistar rat insertion method [J]. Journal of Chongqing Medical University, 2002, 27 (1):1-3.(in Chinese)
罗勇, 董为伟. Wistar大鼠插线法局灶性脑缺血/再灌注模型的实验研究[J].重庆医科大学学报, 2002, 27(1):1-3.
[6] Liu XW, Tang ZhM, Chai BX. Preparation of high purity125Ⅰ-nerve growth factor [J]. Academy of  Military Medical Sciences,1998,11(3):144-148.(in Chinese)
刘秀文,汤仲明,柴彪新.高纯度125Ⅰ-神经生长因子的制备[J].军事医学科学院院报,1998,11(3):144-148.
[7] Liu XW, Dai ShJ, Liao Zh, et al.  Tissue distribution after epidural and intravenous injection of  tigerotoxin-Ⅰ in rats [J]. Chinese Journal of Pharmacology and Toxicology, 2003, 17(2):146-150. (in Chinese)
刘秀文,戴舒佳,廖智,等.大鼠硬膜外和静脉注射虎纹毒素-Ⅰ后的组织分布[J].中国药理学与毒理学杂志,2003,17(2):146-150.
[8] Tang GH, Jiang GH, Zhang Y, et al. Study on the pharmacokinetics of nerve growth factor by iodine-labeled tracer precipitation method [J]. Journal of China Pharmaceutical University,2003,31(3):180-183. (in Chinese)
唐刚华,姜国辉,张云,等. 碘标记示踪沉淀法研究神经生长因子的药代动力学[J],中国药科大学学报.2003,31(3):180-183.
[9] Diao Y, Li YM, Zhou MK, et al. Autoradiography of  (99) TC-m-hl91 in ischemic brain of rats [J]. Chinese Journal of Nuclear Medicine, 2005,5(3):88-91. (in Chinese)
刁尧,李亚明,周明坤,等.(99)TC-m-hl91在大鼠缺血脑内分布的放射自显影观察[J].中华核医学杂志,2005,5(3):88-91.
[10] Crupi R, Di Paola R, Esposito E, et al. Middle cerebral artery occlusion by an intraluminal suture method [J]. Methods Mol Biol, 2018,1727:393-401.
[11] Hayakawa K, Itoh T, Niwa H, et al. NGF prevention of neurotoxicity induced by cisplatin,vincristine and taxol depends on toxicity of each drug and NGF treatment schedule: in vitro study of adult rat sympathetic ganglion explants[J].Brain Res,2011,794(2):313-319.
[12] McCarthy KD, Vellis JD. Preparation of separate troglial and oligeledroglial cell cultures from rat cerebral tissue [J].J Cell Biol, 2010,85(3):890-902.
[13] Aoki T, Sumii T. Blood-brain barrier disruption and matrix metaloproteimase-9 expression and during reperfusion injury mechanical versus embolic focal ischemia in spontaneously nypertensive rats [J].Stroke,2010,33(11):2711
[14] Eriksdotter Jonhagen M, Nordberg A, Amberla K, et al. Intracere-broventricular infusion of nerve growth factor in three patients with Alzheimer’ s disease[J]. Dement Geriatr Cogn Disord, 2008,9(5):246-257.
[15] Yasunaga A. Experimental cerebral infarction in dog;ultrastructural study of microvasculature in recanalization model [J].Neurol Med Chir (Tokyo),2010, 22(3):185-187.
[16] Raub TJ. Signal transduction and glial cell modulation of cultured brain microvessel endothelial cell tight junction [J]. Am J Physiol,2006, 271(2 Pt1):c495-503.
[17] Herman IM, Pollard TD, Wong AJ. Contractile proteins in endothelial cells[J].Ann N Y Acad Sci,1982,401:50-60.
[18] Yang L,Li DC,Chen ShY. Hydrogen water reduces NSE,IL-6,and TNF-αlevels in hypoxic-ischemic encephalopathy[J]. Open Med(Wars),2016,11(1):399-406. 
[19] Li SJ,Liu W,Wang JL,et al. The role of TNF-α,IL-6,IL-10,and GDNF in neuronal apoptosis in neonatal rat with hypoxic-ischemic Encephalopathy[J].Eur Rev Med Pharmacol Sci,2014,18(6): 905-909. 
[20] Liu X, Ma X, Wei X, et al. Ting Fan.Neuroprotective effect of licochalcone a against oxygen-glucose deprivation/reperfusion in rat primary cortical neurons by attenuating oxidative stress injury and inflammatory response via the SIRT1/Nrf2 pathway[J].J Cell Biochem, 2018,119(4):3210-3219.
[21] Bundgaard M. Tubular invaginations in cerebral endothelium and their relation to smooth-surfaced cisternae in hagfish (Myxine glutinosa)[J].Cell Tissue Res, 1987, 249 (2):359-365.
[22] Kim GM,Lewen A,Copin J,et al. The cytosolic antioxclant,copper/zinc superoxide dismutase, attenuates blood-brain barrier disruption and oxidative cellular injury after photothrombotic cortical ischemia in mice[J]. Neuroscience, 2001, 105(4):1007-1018.
[23] Asahi M, Wang X, Morri T, et al. Effects of matrix metalloproteinase-9 gene Knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia[J].J Neurosci,2008,21(19):7724-7732.

基金

内蒙古自治区人民医院院内基金

PDF(6808 KB)

Accesses

Citation

Detail

段落导航
相关文章

/