循环间歇性低氧对大鼠肾上腺β淀粉样前体蛋白裂解酶1表达的影响

范娅楠 李超红 贾祥磊 刘玉珍

解剖学报 ›› 2020, Vol. 51 ›› Issue (2) : 162-166.

PDF(8312 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(8312 KB)
解剖学报 ›› 2020, Vol. 51 ›› Issue (2) : 162-166. DOI: 10.16098/j.issn.0529-1356.2020.02.002
神经生物学

循环间歇性低氧对大鼠肾上腺β淀粉样前体蛋白裂解酶1表达的影响

  • 范娅楠 李超红 贾祥磊 刘玉珍*
作者信息 +

Effect of cyclic intermittent hypoxia on the expression of β-site amyloid precursor protein cleaving enzyme 1 in rat adrenal gland

  • FAN Ya-nan LI Chao-hong JIA Xiang-lei LIU Yu-zhen*
Author information +
文章历史 +

摘要

目的  观察β淀粉样前体蛋白裂解酶1(BACE1)在大鼠肾上腺的表达和定位,检测循环间歇性低氧(CIH)对BACE1表达的影响。  方法  采用Western blotting和免疫组织化学法检测BACE1在大鼠肾上腺的表达及定位; 16只雄性SD大鼠随机分为2组,常氧对照组(control组)和CIH模型组,每组8只。模型制作2周,Western blotting检测各组大鼠肾上腺髓质BACE1和酪氨酸羟化酶(TH)蛋白的表达量。  结果  BACE1主要定位于大鼠肾上腺髓质神经纤维;与control组相比, CIH 组大鼠肾上腺髓质BACE1蛋白水平下降,TH蛋白水平升高(P<0.05)。  结论  BACE1定位于大鼠肾上腺髓质神经纤维;BACE1水平下调可能参与减缓CIH引起的交感神经活性过度增强。

Abstract

Objective  To observe the expression and localization of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) in rat adrenal gland and to detect the effect of cyclic intermittent hypoxia (CIH) on the expression of BACE1.  Methods  The expression and localization of BACE1 in rat adrenal gland were detected by Western blotting and immunohistochemistry. Sixteen male Sprague-Dawley (SD) rats were randomly divided into two groups: control group and CIH group, 8 rats in each group. The protein levels of BACE1 and tyrosine hydroxylase (TH) in rat adrenal medulla were detected by Western blotting after CIH 2 weeks treatment.   Results  BACE1 was mainly localized in rat adrenal medullary nerve fibers. Compared with the control group, BACE1 protein level decreased and TH protein level increased in the adrenal medulla in the CIH group. 
 Conclusion BACE1 is located in rat adrenal medullary nerve fibers. The decreased level of BACE1 may participate in slowing down the excessive enhancement of sympathetic activity induced by CIH.

关键词

β淀粉样前体蛋白裂解酶1 / 肾上腺 / 酪氨酸羟化酶 / 循环间歇性低氧 / 免疫印迹法 / 大鼠

Key words

β-site amyloid precursor protein cleaving enzyme 1 / Adrenal gland / Tyrosine hydroxylase / Cyclic intermittent hypoxia / Western blotting / Rat

引用本文

导出引用
范娅楠 李超红 贾祥磊 刘玉珍. 循环间歇性低氧对大鼠肾上腺β淀粉样前体蛋白裂解酶1表达的影响[J]. 解剖学报. 2020, 51(2): 162-166 https://doi.org/10.16098/j.issn.0529-1356.2020.02.002
FAN Ya-nan LI Chao-hong JIA Xiang-lei LIU Yu-zhen. Effect of cyclic intermittent hypoxia on the expression of β-site amyloid precursor protein cleaving enzyme 1 in rat adrenal gland[J]. Acta Anatomica Sinica. 2020, 51(2): 162-166 https://doi.org/10.16098/j.issn.0529-1356.2020.02.002
中图分类号: R34   

参考文献

[1] Munro KM, Nash A, Pigoni M, et al. Functions of the Alzheimer’s disease protease BACE1 at the synapse in the central nervous system[J]. Mol Neurosci, 2016, 60(3):305-315.
[2] Sadleir KR, Kandalepas PC, Buggia-Prévot V, et al. Presynaptic dystrophic neuritis surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer’s disease[J]. Acta Neuropathol, 2016, 132(2):235-256.
[3] Xiangyou Hu, Caitlin W Hicks, Wanxia He, et al. BACE1 modulates myelination in the central and peripheral nervous system[J]. Nat Neurosci, 2006, 9(12):1520-1525.
[4] Tallon C, Farah MH. Beta secretase activity in peripheral nerve regeneration[J]. Neural Regen Res, 2017, 12(10): 1565-1574.
[5] García-Río F, Racionero MA, Pino JM, et al. Sleep apnea and hypertension[J]. Chest, 2000, 117(5):1417-1425. 
[6] Peng YJ, Yuan G, Khan S, et al. Regulation of hypoxia-inducible factor-α isoforms and redox state by carotid body neural activity in rats[J]. J Physiol, 2014, 592(17):3841-3858. 
[7] Lin Gao, Patricia Ortega-Sáenz, José López-Barneo. Acute oxygen sensing-role of metabolic specifications in peripheral chemoreceptor cells[J]. Respir Physiol Neurobiol, 2019, 265:100-111.
[8] Heindl M, Tuennemann J, Sommerer Ⅰ, et al. Loss of BACE1 in mice does not alter the severity of caerulein induced pancreatitis[J]. PLoS One, 2015, 10(5): e0125556.
[9] Zhu K, Xiang X, Filser S, et al. Beta-site amyloid precursor protein cleaving enzyme 1 inhibition impairs synaptic plasticity via seizure protein 6[J]. Biol Psychiatry, 2018, 83(5):428-437.
[10] Lumb R, Tata M, Xu X, et al. Neuropilins guide preganglionic sympathetic axons and chromaffin cell precursors to establish the adrenal medulla[J]. Development, 2018, 145(21):dev162552.
[11] Fletcher EC. Physiological consequences of intermittent hypoxia: systemic blood pressure[J]. Appl Physiol, 2001, 90(4):1600-1605.
[12] Nanduri J, Peng YJ, Yuan G, et al. Hypoxia-inducible factors and hypertension: lessons from sleep apnea syndrome[J]. Mol Med (Berl), 2015, 93(5):473-480.
[13] Gao L, Bonilla-Henao V, García-Flores P, et al. Gene expression analyses reveal metabolic specifications in acute O2-sensing chemoreceptor cells[J]. J Physiol, 2017, 595(18):6091-6120.
[14] Liu JP, Long GK. Histological study on the nerve supply of the human adrenal gland[J]. Acta Anatomica Sinica, 1964, 7(3):344-351.(in Chinese)
刘经平, 龙桂开. 关于人肾上腺的神经供给的组织学研究[J]. 解剖学报, 1964, 7(3):344-351.
[15] Yokotani K, Okada S, Nakamura K, et al. Characterization of functional nicotinic acetylcholine receptors involved in catecholamine release from the isolated rat adrenal gland[J]. Eur J Pharmacol, 2002, 446(1-3):83-87.
[16] Lim J, Kim HI, Bang Y, et al. Hypoxia-inducible factor-1α upregulates tyrosine hydroxylase and dopamine transporter by nuclear receptor ERRγ in SH-SY5Y cells[J]. Neuroreport, 2015, 26(6):380-386.
[17] Kumar GK, Nanduri J, Peng YJ, et al. Neuromolecular mechanisms mediating the effects of chronic intermittent hypoxia on adrenal medulla[J]. Respir Physiol Neurobiol, 2015, 209:115-119.

基金

国家自然科学基金;新乡医学院研究生科研创新支持计划

PDF(8312 KB)

Accesses

Citation

Detail

段落导航
相关文章

/