西达本胺增加慢性髓系白血病耐药株K562/ADM细胞对柔红霉素的敏感性

王世广 司旭艳 李晓婷 李登云 王丽君 王鹏

解剖学报 ›› 2019, Vol. 50 ›› Issue (6) : 754-760.

PDF(397 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(397 KB)
解剖学报 ›› 2019, Vol. 50 ›› Issue (6) : 754-760. DOI: 10.16098/j.issn.0529-1356.2019.06.009
肿瘤生物学

西达本胺增加慢性髓系白血病耐药株K562/ADM细胞对柔红霉素的敏感性

  • 王世广1 司旭艳2 李晓婷1 李登云1 王丽君1 王鹏3*
作者信息 +

Enhancing effect of chidamide on the sensibility of human chronic myeloid leukemia K562/ADM cells to daunorubicin

  • WANG Shi-guang1 SI Xu-yan2 LI Xiao-ting1 LI Deng-yun1 WANG Li-jun1 WANG Peng 3*
Author information +
文章历史 +

摘要

目的 观察西达本胺(CDM)能否影响人慢性髓系白血病耐药株K562/ADM细胞对柔红霉素(DNR)的敏感性,并探讨其可能的分子机制。方法 体外常规培养K562细胞和K562/ADM细胞,给予不同剂量CDM和(或)DNR处理48 h后,采用细胞计数试剂盒8(CCK-8)法检测CDM与DNR对K562和K562/ADM细胞的毒性作用,采用Chou-Talalay中效分析法对两药的联合效应进行评价,采用流式细胞术检测细胞增殖、细胞周期和凋亡,采用Western blotting方法检测组蛋白2AX(H2AX)、γH2AX(Ser139)、共济失调毛细血管扩张征突变基因(ATM)、p-ATM(Ser1981)、乳腺癌易感蛋白l(BRCA1)和p-BRCA1(Ser1524)的蛋白表达水平。 结果 DNR可剂量依赖性地抑制K562/ADM细胞活力(P<0.05),半数抑制浓度(IC50)为11.76 μmol/L,耐药倍数为18.09;CDM可协同增强DNR对K562/ADM细胞的抑制作用置信区间(CI)(CI<1),反转倍数为8.11;与对照组相比,DNR组细胞增殖率显著降低(P<0.05),G2/M期细胞比例和凋亡率明显升高(P<0.05),而无毒剂量的CDM可协同增强DNR引起的细胞增殖抑制、G2/M期阻滞和细胞凋亡(P<0.05);耐药株K562/ADM细胞中ATM和BRCA1蛋白表达水平显著高于其亲代K562细胞(P<0.05);DNR可上调K562/ADM细胞中H2AX、ATM和BRCA1蛋白的磷酸化水平(P<0.05);CDM与DNR联用可使γH2AX蛋白水平进一步升高,但p-ATM和pBRCA1蛋白水平的变化则相反(P<0.05)。 结论 CMD可反转K562/ADM细胞对DNR的耐药性,这可能与上调H2AX蛋白的磷酸化水平以及下调ATM和BRCA1蛋白的磷酸化水平有关。

Abstract

Objective To investigate whether chidamide (CDM) could influence the sensibility of human chronic myeloid leukemia K562/ADM cells to daunorubicin (DNR) and its possible mechanism. Methods The K562 and K562/ADM cells were cultured in vitro and treated with CDM and(or) DNR for 48 hous, and then the cell viability was measured by cell counting kit-8(CCK-8) assay. The proliferation, cell cycle and apoptosis were analyzed by flow cytometry. Western blotting was performed to measure the protein levels of histon 2AX(H2AX), γH2AX (Ser139), ataxia telangiectasia mutated gene (ATM), p-ATM (Ser1981), breast cancer susceptibility protein 1(BRCA1), and p-BRCA1 (Ser1524). Results DNR remarkably inhibited the cell activity of K562/ADM cells in dose-dependent manner with a half maximal inhibitory concentration(IC50) value of 11.76 μmol/L, and the resistant factor was 18.09. Co-treatment with CMD and DNR produced a synergistic effect confidence interval(Cl)(CI<1) with a reversal fold of 8.11. DNR remarkably inhibited proliferation (P<0.05), induced G2/M phase arrest and apoptosis (P<0.05), these effects were enhanced under non-toxic concentration of CMD (P<0.05). K562/ADM cells had a significantly higher protein levels of ATM and BRCA1 than K562 cells (P<0.05). DNR significantly up-regulated the protein levels of γH2AX, p-ATM and p-BRCA1 (P<0.05), and the protein level of γH2AX appeared higher in the combination group compared to DNR alone (P<0.05); however, the co-treatment with CMD and DNR induced a decreased expression of p-ATM and pBRCA1 than the DNR alone (P<0.05). Conclusion CDM may enhance the sensibility of K562/ADM cells to DNR by up-regulating the protein level of γH2AX, and down-regulating the protein levels of p-ATM and p-BRCA1.

关键词

西达本胺 / 柔红霉素 / K562/ADM细胞 / 乳腺癌易感蛋白l / 组蛋白2AX / 流式细胞术 /

Key words

Chidamide / Daunorubicin / K562/ADM cell / Breast cancer susceptibility protein 1 / Histon2AX / Flow cytomertry / Human

引用本文

导出引用
王世广 司旭艳 李晓婷 李登云 王丽君 王鹏. 西达本胺增加慢性髓系白血病耐药株K562/ADM细胞对柔红霉素的敏感性[J]. 解剖学报. 2019, 50(6): 754-760 https://doi.org/10.16098/j.issn.0529-1356.2019.06.009
WANG Shi-guang SI Xu-yan LI Xiao-ting LI Deng-yun WANG Li-jun WANG Peng. Enhancing effect of chidamide on the sensibility of human chronic myeloid leukemia K562/ADM cells to daunorubicin[J]. Acta Anatomica Sinica. 2019, 50(6): 754-760 https://doi.org/10.16098/j.issn.0529-1356.2019.06.009

参考文献

 [1] Thompson PA, Kantarjian HM, Cortes JE. Diagnosis and treatment of chronic myeloid Leukemia in 2015[J]. Mayo Clin Proc, 2015, 90(10):1440-1454.
 [2] Perrone S, Massaro F, Alimena G, et al. How has treatment changed for blast phase chronic myeloid leukemia patients in the tyrosine kinase inhibitor era? A review of efficacy and safety[J]. Expert Opin Pharmacother, 2016, 17(11):1517-1526.
 [3] Lu X, Ning Z, Li Z, et al. Development of chidamide for peripheral T-cell lymphoma, the first orphan drug approved in China[J]. Intractable Rare Dis Res, 2016, 5(3):185-191.
 [4] Simó-Riudalbas L, Esteller M. Targeting the histone orthography of cancer: drugs for writers, erasers and readers[J]. Br J Pharmacol, 2015, 172(11):2716-2732.
 [5] Li Y, Wang Y, Zhou Y, et al. Cooperative effect of chidamide and chemotherapeutic drugs induce apoptosis by DNA damage accumulation and repair defects in acute myeloid leukemia stem and progenitor cells[J]. Clin Epigenetics, 2017, 9(2017):83.
 [6] Shi P, Zhang L, Chen K, et al. Low-dose decitabine enhances chidamide-induced apoptosis in adult acute lymphoblast leukemia, especially for p16-deleted patients through DNA damage[J]. Pharmacogenomics, 2017, 18(13):1259-1270.
 [7] He M, Qiao Z, Wang Y, et al. Chidamide inhibits aerobic metabolism to Induce pancreatic cancer cell growth arrest by promoting Mcl-1 degradation[J]. PLoS One, 2016, 11(11): e0166896.
 [8] Shi JY, Dong M, Hong X, et al. Results from a multicenter, open-label, pivotal phase Ⅱ study of chidamide in relapsed or refractory peripheral T-cell lymphoma[J]. Ann Oncol, 2015, 26(8):1766-1771.
 [9] Pang B, Qiao X, Janssen L, et al. Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin[J]. Nat Commun, 2013, 4:190
 [10] Cheng X,Jobin-Robitaille O,Billon P, et al. Phospho-dependent recruitment of the yeast NuA4 acetyltransferase complex by MRX at DNA breaks regulates RPA dynamics during resection[J]. Proc Natl Acad Sci USA, 2018, 115(40):10028-10033.
 [11] Ackermann L,Schell M,Pokrzywa W, et al. E4 ligase-specific ubiquitination hubs coordinate DNA double-strand-break repair and apoptosis[J]. Nat Struct Mol Biol, 2016, 23(11):995-1002.
 [12] Wagner W,Ciszewski WM,Kania KD. L- and D-lactate enhance DNA repair and modulate the resistance of cervical carcinoma cells to anticancer drugs via histone deacetylase inhibition and hydroxycarboxylic acid receptor 1 activation[J]. Cell Commun Signal, 2015, 13:36.
 [13] Blackford AN,Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response[J]. Mol Cell, 2017, 66(6):801-817.
 [14] Xing XK, Li MH, Xu CSh, et al. Expression changes of AKT,ATM,D4-GDI and p53 cell apoptosis pathway genes in the process of rat liver regeneration[J]. Acta Anatomica Sinica, 2016, 47(3):315-322. (in Chinese)
邢雪琨, 李梦华, 徐存拴, 等. AKT、ATM、D4-GDI 和p53 4 条细胞凋亡通路基因在大鼠肝再生过程中的表达变化[J]. 解剖学报, 2016, 47(3):315-322.
 [15] Isono M,Niimi A, Oike T, et al. BRCA1 directs the repair pathway to homologous recombination by promoting 53BP1 dephosphorylation[J]. Cell Rep, 2017, 18(2):520-532.
 [16] Badie S, Carlos AR, Folio C, et al. BRCA1 and CtIP promote alternative non-homologous end-joining at uncapped telomeres[J]. EMBO J, 2015, 34(3):410-424.
 [17] Siddiqui MS,Franois M,Fenech MF, et al. Persistent γH2AX: a promising molecular marker of DNA damage and aging[J]. Mutat Res Rev Mutat Res, 2015, 766(2015):1-19.
 [18] Timme CR, Rath BH, O’Neill JW, et al. The DNA-PK inhibitor VX-984 enhances the radiosensitivity of glioblastoma cells grown in vitro and as orthotopic xenografts[J]. Mol Cancer Ther, 2018, 17(6):1207-1216.
 [19] Jin J, Fang H, Yang F, et al. Combined inhibition of ATR and WEE1 as a novel therapeutic strategy in triple-negative breast cancer[J]. Neoplasia, 2018, 20(5):478-488. 

基金

国家自然科学基金资助项目;河南省高等学校重点科研项目;河南省高等学校重点科研项目;河南省卫生与计划生育委员会医学教育研究课题

PDF(397 KB)

Accesses

Citation

Detail

段落导航
相关文章

/