骨血管形成机制及功能的研究进展

李旭 陈依民 王鼎予 沈重成 张卫光

解剖学报 ›› 2019, Vol. 50 ›› Issue (5) : 703-706.

PDF(93 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(93 KB)
解剖学报 ›› 2019, Vol. 50 ›› Issue (5) : 703-706. DOI: 10.16098/j.issn.0529-1356.2019.05.027
综述

骨血管形成机制及功能的研究进展

  • 李旭 陈依民 王鼎予 沈重成 张卫光*
作者信息 +

Advances of mechanism and function of bone vascularization

  •  LI Xu CHEN Yi-min WANG Ding-yu SHEN Zhong-cheng ZHANG Wei-guang*
Author information +
文章历史 +

摘要

骨血管系统不仅为高代谢的骨细胞提供氧气与营养物质,也参与骨形成与骨再生过程。骨组织毛细血管可分为两种亚型,它们具有不同的形态和生理特点。内皮细胞与骨细胞通过多种信号通路沟通,血管形成与骨形成也具有协同作用。对骨血管结构及血管形成信号通路的探索有助于骨折愈合临床治疗的发展。

Abstract

The vascular system in bone not only provides oxygen and nutrients to highly anabolic skeletal cells, but also participates in the process of bone formation and bone regeneration. Based on morphological and physiological characteristics, two subtypes of bone capillaries can be distinguished. Endothelial cells and osteoprogenitor cells influence each other by secreting specific growth factors, which have an important role in the coupling of angiogenesis and osteogenesis. A greater understanding of the architecture of the bone vasculature and the angiogenic response may contribute to enhanced bone regeneration.

关键词

/ 血管形成 / 骨折愈合

Key words

Bone / Angiogenesis / Fracture healing

引用本文

导出引用
李旭 陈依民 王鼎予 沈重成 张卫光. 骨血管形成机制及功能的研究进展[J]. 解剖学报. 2019, 50(5): 703-706 https://doi.org/10.16098/j.issn.0529-1356.2019.05.027
LI Xu CHEN Yi-min WANG Ding-yu SHEN Zhong-cheng ZHANG Wei-guang. Advances of mechanism and function of bone vascularization[J]. Acta Anatomica Sinica. 2019, 50(5): 703-706 https://doi.org/10.16098/j.issn.0529-1356.2019.05.027

参考文献

 [1] Grosso A, Burger MG, Lunger A, et al. It takes two to tango: coupling of angiogenesis and osteogenesis for bone regeneration[J]. Front Bioeng Biotechnol, 2017, 5: 68.
 [2] Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone[J]. Nature, 2014, 507(7492): 323-328.
 [3] Eshkar-Oren Ⅰ, Viukov SV, Salameh S, et al. The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of Vegf[J]. Development, 2009, 136(8): 1263-1272.
 [4] Ramasamy SK, Kusumbe AP, Adams RH. Regulation of tissue morphogenesis by endothelial cell-derived signals[J]. Trends Cell Biol, 2015, 25(3): 148-157.
 [5] Bahney CS, Hu DP, Miclau T, et al. The multifaceted role of the vasculature in endochondral fracture repair[J]. Front Endocrinol (Lausanne), 2015, 6:4.
 [6] Ramasamy SK. Structure and functions of blood vessels and vascular niches in bone[J]. Stem Cells Int, 2017, 2017: 5046953.
 [7] Spencer JA, Ferraro F, Roussakis E, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals[J]. Nature, 2014, 508 (7495): 269-273.
 [8] Ramasamy SK, Kusumbe AP, Schiller M, et al. Blood flow controls bone vascular function and osteogenesis[J]. Nat Commun, 2016, 7(1): 13601.
 [9] Bixel MG, Kusumbe AP, Ramasamy SK, et al. Flow dynamics and HSPC homing in bone marrow microvessels[J]. Cell Rep, 2017, 18(7): 1804-1816.
 [10]Shiozawa Y, Havens AM, Pienta KJ, et al. The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites[J]. Leukemia, 2008, 22(5):941-950.
 [11]Sivaraj KK, Adams RH. Blood vessel formation and function in bone[J]. Development, 2016, 143(15): 2706-2715.
 [12]Barna M, Niswander L. Visualization of cartilage formation: insight into cellular properties of skeletal progenitors and chondrodysplasia syndromes[J]. Dev Cell, 2007, 12(6): 931-941.
 [13]Palm MM, Dallinga MG, van Dijk E, et al. Computational screening of tip and stalk cell behavior proposes a role for apelin signaling in sprout progression[J]. PLoS One, 2016, 11(11): e0159478.
 [14]Potente M, Makinen T. Vascular heterogeneity and specialization in development and disease[J]. Nat Rev Mol Cell Biol, 2017, 18(8): 477-494.
 [15]Ben Shoham A, Rot C, Stern T, et al. Deposition of collagen type Ⅰ onto skeletal endothelium reveals a new role for blood vessels in regulating bone morphology[J]. Development, 2016, 143(21): 3933-3943.
 [16]Wang L, Benedito R, Bixel MG, et al. Identification of a clonally expanding haematopoietic compartment in bone marrow.[J]. Embo Journal, 2013, 32(2):219-230.
 [17]Bentovim L, Amarilio R, Zelzer E. HIF1alpha is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development[J]. Development, 2012, 139(23): 4473-4483.
 [18]Blanco R, Gerhardt H. VEGF and Notch in tip and stalk cell selection[J]. Cold Spring Harb Perspect Med, 2013, 3(1): a006569.
 [19]Ramasamy SK, Kusumbe AP, Wang L, et al. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone[J]. Nature, 2014, 507(7492): 376-380.
 [20]Murakami M, Nguyen LT, Hatanaka K, et al. FGF-dependent regulation of VEGF receptor 2 expression in mice[J]. J Clin Invest, 2011, 121(7): 2668-2678.
 [21]Wallner C, Schira J, Wagner JM, et al. Application of VEGFA and FGF-9 enhances angiogenesis, osteogenesis and bone remodeling in type 2 diabetic long bone regeneration[J]. PLoS One, 2015, 10(3): e0118823.
 [22]Behr B, Sorkin M, Manu A, et al. Fgf-18 is required for osteogenesis but not angiogenesis during long bone repair[J]. Tissue Eng Part A, 2011, 17(15-16): 2061-2069.
 [23]Itkin T, GurCohen S, Spencer JA, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis[J]. Nature, 2016, 532(7599): 323-328.
 [24]Street J, Bao M, deGuzman L, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover[J]. Proc Natl Acad Sci USA, 2002, 99(15): 9656-9661. 
 [25]Behr B, Leucht P, Longaker MT, et al. Fgf-9 is required for angiogenesis and osteogenesis in long bone repair[J]. Proc Natl Acad Sci USA, 2010, 107(26): 11853-11858.
 [26]Lieu S, Hansen E, Dedini R, et al. Impaired remodeling phase of fracture repair in the absence of matrix metalloproteinase-2[J]. Dis Model Mech, 2011, 4(2): 203-211.

基金

北京大学医信种子基金

PDF(93 KB)

Accesses

Citation

Detail

段落导航
相关文章

/