环状RNA及其在肝病中的作用

王棋文 李盼 王嵩雲 郭学强 张春艳 杨亚军 李剑勇 徐存拴

解剖学报 ›› 2019, Vol. 50 ›› Issue (5) : 690-697.

PDF(159 KB)
欢迎访问《解剖学报》官方网站!今天是 English
PDF(159 KB)
解剖学报 ›› 2019, Vol. 50 ›› Issue (5) : 690-697. DOI: 10.16098/j.issn.0529-1356.2019.05.025
综述

环状RNA及其在肝病中的作用

  • 王棋文1 李盼1 王嵩雲1 郭学强1 张春艳1 杨亚军2 李剑勇2* 徐存拴1*
作者信息 +

Circular RNA and its role in liver diseases

  • WANG Qi-wen1 LI Pan1 WANG Song-yun1 GUO Xue-qiang1 ZHANG Chun-yan1 YANG Ya-jun2 LI Jian-yong 2* XU Cun-shuan 1*
Author information +
文章历史 +

摘要

环状RNA(circRNA)是一种不具有5’末端帽子结构和3’末端的poly(A)尾巴的新型非编码RNA,是由非共价键形成的反向连接的闭合环状结构。circRNA由于其具有作为miRNA分子海绵及生物标志物的作用,可用于肝脏疾病的治疗和诊断,因此,circ RNA已逐渐成为当今的研究热点。我们针对circRNA以及circRNA在肝病中的研究进行了综述,以期对未来的肝脏疾病的研究和治疗提供理论基础和新思路。

Abstract

The circular RNA (circ RNA) is a novel non-coding RNA having no 5’ end cap structure and a 3’ end poly(A) tail, and is a reversely linked closed loop structure formed by non-covalent bonds. Due to its role as a sponge for miRNA molecules and biomarker, circular RNA can be used in the treatment and diagnosis of liver diseases, and it has increasingly become a research hotspot. In this paper, the research on circRNA and circRNA in liver disease is reviewed, in order to provide theoretical basis and new ideas for the research and treatment of future liver diseases.

关键词

环状RNA / 生物学功能 / 肝脏疾病

Key words

Circular RNA / Biological function / Liver disease

引用本文

导出引用
王棋文 李盼 王嵩雲 郭学强 张春艳 杨亚军 李剑勇 徐存拴. 环状RNA及其在肝病中的作用[J]. 解剖学报. 2019, 50(5): 690-697 https://doi.org/10.16098/j.issn.0529-1356.2019.05.025
WANG Qi-wen LI Pan WANG Song-yun GUO Xue-qiang ZHANG Chun-yan YANG Ya-jun LI Jian-yong XU Cun-shuan. Circular RNA and its role in liver diseases[J]. Acta Anatomica Sinica. 2019, 50(5): 690-697 https://doi.org/10.16098/j.issn.0529-1356.2019.05.025

参考文献

 [1] Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rodlike structures[J].Proc Natl Acad Sci USA, 1976, 73(11):3852-3856.
 [2] Arnberg AC,Van Ommen GJ, Grivell LA, et al. Some yeast mitochondrial RNAs are circular[J].Cell, 1980, 19(2):313-319.
 [3] Nigro JM, Cho KR, Fearon ER, et al. Scrambled exons[J].Cell, 1991, 64(3):607-613.
 [4] Cocquerelle C, Mascrez B, Hetuin D, et al. Mis-splicing yields circular RNA molecules[J]. FASEB J, 1993, 7(1):155-160.
 [5] Li XF, Lytton J. A circularized sodium-calcium exchanger exon 2 transcript[J].J Biol Chem, 1999, 274(12):8153-8160.
 [6] Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441):384-388.
 [7] Lu Z, Filonov GS, Noto JJ, et al. Metazoan tRNA introns generate stable circular RNAs in vivo[J]. RNA, 2015, 21(9):1554-1565.
 [8] Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2):141-157.
 [9] Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs[J]. Cell, 2015, 160(6):1125-1134.
 [10] Bahn JH, Zhang Q, Li F, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva[J].Clin Chem, 2015, 61(1):221-230.
 [11] Zang XY,Geng XF,Zhang ChY,et al. Role of microRNAs in liver regeneration[J]. Acta Anatomica Sinica, 2017, 48(2):230-235.(in Chinese)
臧夏炎, 耿小芳, 张春艳, et al. microRNAs在肝再生中的作用研究进展[J]. 解剖学报, 2017, 48(2):230-235.
 [12] Zeng K, Chen X, Xu M, et al. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7[J]. Cell Death Dis, 2018, 9(4):417.
 [13] Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1):55-66.
 [14] Du WW, Fang L, Yang WN, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity[J]. Cell Death and Differ, 2017, 24(2): 357-370.
 [15] Du WW, Yang W, Chen Y, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses[J]. Eur Heart J, 2017, 38(18): 1402-1412.
 [16] Hu X, Ao J, Li X, et al. Competing endogenous RNA expression profiling in pre-eclampsia identifies hsa_circ_0036877 as a potential novel blood biomarker for early pre-eclampsia[J].Clin Epigenetics, 2018, 10(1):48.
 [17] Zong L, Sun Q, Zhang H, et al. Increased expression of circRNA_102231 in lung cancer and its clinical significance[J]. Biomed Pharmacother, 2018, 102:639-644.
 [18] Li PF, Chen SC, Chen HL, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer[J]. Clin Chim Acta, 2015, 444:132-136.
 [19] Li Y, Zheng QP, Bao CY, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis[J]. Cell Res, 2015, 25(8):981-984.
 [20] Li L, Guo J, Chen Y, et al. Comprehensive CircRNA expression profile and selection of key circRNAs during priming phase of rat liver regeneration[J]. BMC Genomics, 2017, 18(1):80.
 [21] Guo XY, Chen JN, Sun F, et al. circRNA_0046367 prevents hepatoxicity of lipid peroxidation: an inhibitory role against hepatic steatosis[J]. Oxid Med Cell Longev, 2017, 2017:3960197.
 [22] Guo XY, Sun F, Chen JN, et al. circRNA_0046366 inhibits hepatocellular steatosis by normalization of PPAR signaling[J]. World J Gastroenterol, 2018, 24(3):323-337.
 [23] Xiao J, Lv D, Zhao Y, et al. miR-149 controls non-alcoholic fatty liver by targeting FGF-21[J]. J Cell Mol Med, 2016, 20(8):1603-1608.
 [24] Yamada H, Suzuki K, Ichino N, et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver[J]. Clini Chimi Acta, 2013, 424:99-103.
 [25] Tan YW, Ge GH, Pan TL, et al. A pilot study of serum micrornas panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease[J]. PLoS One, 2014, 9(8):e105192.
 [26] Braza-Boils A, MariAlexandre J, Molina P, et al. Deregulated hepatic microRNAs underlie the association between non-alcoholic fatty liver disease and coronary artery disease[J]. Liver Int, 2016, 36(8):1221-1229.
 [27] Jin X, Feng CY, Xiang Z, et al. CircRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of nonalcoholic steatohepatitis[J]. Oncotarget, 2016, 7(41):66455-66467.
 [28] Qiao DD, Yang J, Lei XF, et al. Expression of microRNA-122 and microRNA-22 in HBV-related liver cancer and the correlation with clinical features[J]. Eur Rev Med Pharmacol Sci, 2017, 21(4):742-747.
 [29] Xie Y, Yao Q, Butt AM, et al. Expression profiling of serum microRNA-101 in HBV-associated chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma[J].Cancer Biol Ther, 2014, 15(9):1248-1255.
 [30] Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection[J]. Lancet Infect Dis, 2005, 5(9):558-567.
 [31] Chen S, Ni M, Yu B, et al. Construction and identification of a human liver specific microRNA eukaryotic expression vector[J]. Cell Mol Immunol, 2007, 4(6):473-477.
 [32] Ghosal S, Das S, Sen R, et al. HumanViCe: host ceRNA network in virus infected cells in human[J]. Front Genet, 2014, 5(2014):249.
 [33] Nieder-Rohrmann A, Dunnes N, Gerresheim GK, et al. Cooperative enhancement of translation by two adjacent microRNA-122/Argonaute 2 complexes binding to the 5’untranslated region of hepatitis C virus RNA[J]. J Gen Virol, 2017, 98(2):212-224.
 [34] Jost I, Shalamova LA, Gerresheim GK, et al. Functional sequestration of microRNA-122 from Hepatitis C Virus by circular RNA sponges[J]. RNA Biol, 2018,15(8):1032-1039.
 [35] Zhu RX, Seto WK, Lai CL, et al. Epidemiology of hepatocellular carcinoma in the Asia-Pacific region[J]. Gut Liver, 2016, 10(3):332-339.
 [36] Riordan JD, Feddersen CR, Tschida BR, et al. Chronic liver injury alters driver mutation profiles in hepatocellular carcinoma in mice[J]. Hepatology, 2017, 67(3):924-939.
 [37] Han D, Li J, Wang H, et al. Circular RNA MTO1 acts as the sponge of miR-9 to suppress hepatocellular carcinoma progression[J]. Hepatology, 2017, 66(4):1151-1164.
 [38] Yu L, Gong X, Sun L, et al. The Circular RNA Cdr1as Act as an Oncogene in Hepatocellular Carcinoma through Targeting miR-7 Expression[J]. PLoS One, 2016, 11(7): e0158347.
 [39] Fu LY, Yao T, Chen QQ, et al. Screening differential circular RNA expression profiles reveals hsa_ circ_ 0004018 is associated with hepatocellular carcinoma[J]. Oncotarget, 2017, 8(35):58405-58416.
 [40] Yu J, Xu QG, Wang ZG, et al. Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma[J]. J Hepatol, 2018, 68(6):1214-1227.
 [41] Zhong LH, Wang YY, Cheng Y, et al. Circular RNA circC3P1 suppresses hepatocellular carcinoma growth and metastasis through miR-4641/PCK1 pathway[J]. Biochemical and Biophysical Research Communications, 2018, 499(4):1044-1049.
 [42] Huang X Y, Huang Z L, Xu Y H, et al. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-100338/miR-141-3p pathway in hepatitis B-related hepatocellular carcinoma[J]. Sci Rep, 2017, 7(1):5428.
 [43] Qin M, Liu G, Huo X, et al. Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma[J]. Cancer Biomarkers, 2016, 16(1):161-169.
 [44] Zhang X, Qiu S, Luo P, et al. Down-regulation of hsa_circ_0001649 in hepatocellular carcinoma predicts a poor prognosis[J]. Cancer Biomarkers, 2018, 22(1):135-142.
 [45] Yao ZC, Luo JY, Hu KP, et al. ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways[J]. Mol Oncol, 2017, 11(4):422-437.
 [46] Shang XC, Li GZ, Liu H, et al. Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA biomarker, is involved in hepatocellular crcinoma development[J]. Medicine, 2016, 95(22):e3811.
 [47] Hu J, Li P, Song Y, et al. Progress and prospects of circular RNAs in Hepatocellular carcinoma: Novel insights into their function[J]. J Cell Physiol, 2018, 233(6):4408-4422.
 [48] Guo XY, He CX, Wang YQ, et al. Circular RNA profiling and bioinformatic modeling identify its regulatory role in hepatic steatosis[J]. Biomed Res Int, 2017,2017(22):1-13.
 [49] Fu L, Chen Q, Yao T, et al. Hsa_circ_0005986 inhibits carcinogenesis by acting as a miR-129-5p sponge and is used as a novel biomarker for hepatocellular carcinoma[J]. Oncotarget, 2017, 8(27):43878-43888.
 [50] Wang BG, Li JS, Liu YF, et al. MicroRNA-200b suppresses the invasion and migration of hepatocellular carcinoma by downregulating RhoA and circRNA_000839[J]. Tumour Biol, 2017, 39(7):1010428317719577. 

基金

国家自然基金

PDF(159 KB)

Accesses

Citation

Detail

段落导航
相关文章

/